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Abstract

Evaluating public participation processes requires a lot of resources such as time, money
and expertise. Therefore, tools are desired that help to automate and accelerate the eval-
uation process in order to support municipalities in decision-making. There are different
methods from the area of machine learning that may help to support the evaluation of
public participation processes. In this thesis, the focus lies on the automated classifica-
tion of argument component types. In particular, the goal is to identify major positions
and premises among argumentative sentences in the contributions, following up on the
work of Romberg and Conrad (2021). However, in this work it is additionally considered
that sentences may contain both argument types, i.e., the task is viewed as a multi-label
classification problem where samples can be associated with more than just one label.
For the classification of argument component types, the following machine learning
methods were applied and compared to another: BERT (Devlin et al., 2019), DistilBERT
(Sanh et al., 2019), SVM (Cortes and Vapnik, 1995) and XGBoost (T. Chen and Guestrin,
2016). Since SVM and XGBoost do not support multi-label classification directly, dif-
ferent problem transformation methods were considered, which transform the multi-
classification problem into one or multiple single-label classification problems. Among
different problem transformation methods, label power-set, binary relevance and classifier
chains were chosen. In order to train and test the models for the multi-label classifica-
tion task, five datasets provided by Romberg et al. (2022) were used, which stem from
German public participation processes in the domain of urban planning and sustainable
mobility.
First, the proposed models were evaluated in an dataset-internal evaluation, in which
BERT and DistilBERT clearly outperformed SVM and XGBoost. BERT achieved the best
results, attaining an average macro F1 score of 0.92 on the datasets. Nevertheless, the
significantly smaller and more efficient DistilBERT model achieved similar good results
with an average macro F1 score of 0.91. Among the applied problem transformation
methods for SVM and XGBoost, binary relevance achieved slightly better results.
Next, the performances of BERT, DistilBERT, XGBoost and SVM were investigated in
terms of generalizability. For that, the models were evaluated in a cross-dataset evalua-
tion, i.e., the models were trained on one or more datasets and evaluated on the remain-
ing, unseen datasets. The results have shown that BERT and DistilBERT again outper-
formed SVM and XGBoost by producing better and more stable results. Using the largest
dataset for training, BERT achieved an average macro F1 score of 0.90 on the remaining
datasets and DistilBERT an average macro F1 score of 0.89, achieving highly generaliz-
able results. In contrast, SVM and XGBoost showed weaknesses in generalizing on some
of the datasets.
Overall, the achieved results for the multi-label classification of major positions and
premises were comparable to the results by Romberg and Conrad (2021) for the single-
label classification. Using BERT, they attained an average macro F1 score of 0.91 for the
dataset-internal evaluation and an average macro F1 score of 0.90 for the cross-dataset
evaluation, which lie very close to our results.
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1 Introduction

Municipalities are urban political units of a local government, i.e., they are usually formed
by cities, boroughs, villages or towns. Their tasks include providing public services such
as waste disposal, police and fire protection, water supply, health services and making
decisions on local political issues and services (Encyclopaedia Britannica, 1998). Since
these decisions may affect the daily lives of citizens, it is desirable to make decisions that
are in the best interest of the community. In this regard, the involvement of the citizens
concerned plays an important role in municipal decision-making processes.
There exist multiple ways, in which citizens can engage in municipal decision-making
processes, e.g., by expressing their suggestions through e-mails or letters, on online plat-
forms or on social media. For the term public participation, many definitions can be found
in the literature. Creighton (2005, p. 7) defined it as “the process by which public con-
cerns, needs, and values are incorporated into governmental and corporate decision mak-
ing. It is two-way communication and interaction, with the overall goal of better deci-
sions that are supported by the public”. Similarly, Rowe and Frewer (2004, p. 512) called
it “the practice of consulting and involving members of the public in the agenda-setting,
decision-making, and policy-forming activities of organizations or institutions responsi-
ble for policy development”. According to Arnstein (1969, p. 216), citizen participation,
another commonly used term for public participation, stands for “citizen power”, which
means that it enables citizens that have no governmental authority to be included in pol-
itics and economic processes. However, most of the definitions have in common that
public participation applies to administrative decisions, includes an interaction between
the organization making the decision and the participants, is an organized process for
involving the public and participants have some level of impact on the decision-making
process (Creighton, 2005).
In the past decades, especially electronic forms of public participation, so-called e-
participation, have increasingly become a common instrument used by governments all
across the world (Le Blanc, 2020). Moreover, the involvement of the public in municipal
decision-making is viewed as an effective way of improving the quality and legitimacy of
decisions. Studies like Halvorsen (2003) have shown that public participation can affect
the citizens’ belief in desirable ways, e.g., citizens are more likely to believe that the re-
spective municipality strives to be responsive to public concerns. Also, according to the
study the public tends to tolerate more disagreement over taken actions. Consequently,
demands for public participation have expanded in such a way that it has become a cor-
nerstone of democracy (Roberts, 2004).
In order to consider the citizens’ suggestions in municipal decision-making processes,
their contributions have to be analyzed first. However, the growth of public participa-
tion processes leads to a high number of generated contributions. Hence, evaluating
thousands of citizen comments by hand can very challenging and time-consuming (Teufl
et al., 2009). Furthermore, an adequate evaluation of the contributions often requires ex-
perts with sufficient in-depth domain knowledge. K. Chen and Aitamurto (2019) have
found that despite the strong encouragement of policy-makers for high numbers of par-
ticipation, the overload of user comments exceeds the government’s resources for analyz-
ing all of them effectively. If municipalities do not have enough resources such as time,
money and expertise to cover the requirements for analyzing all contributions, in extreme
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cases only a small portion of the contributions can be taken into account (Arana-Catania
et al., 2021). This may affect the legitimacy of the evaluation negatively. For instance,
filtering out contributions could lead to an under-representation of some interest groups
or opinions. In order to surpass these obstacles of evaluating public participation pro-
cesses, tools are desired that help to automate and accelerate the evaluation process. In
particular, algorithms from the area of machine learning have proven to be promising for
automating content analysis (Scharkow, 2011).
There have been several attempts to automate the evaluation of public participation pro-
cesses with the help of methods from the area of machine learning. One approach to
tackle the problem of information overload in e-participation platforms is clustering and
categorizing comments by topics or grouping citizens by interest. For example, Kwon
et al. (2006) developed techniques to help rule-makers analyze large numbers of public
comments, inter alia, by categorizing the comments into pre-defined subtopics. Also,
Teufl et al. (2009) proposed a framework that employs different machine learning meth-
ods to automatically cluster, pre-screen and pre-evaluate public opinions and contribu-
tions from an Austrian e-participation platform. The framework is designed to gain a
better picture of texts dealing with similar topics and to provide a real time data analysis
for e-participation platforms. Similarly, Arana-Catania et al. (2021) developed a tool that
summarizes user comments posted on a Spanish Consul platform1 and groups citizens
by interest.
Besides thematic structuring, argument mining is also a commonly used approach to auto-
mate public participation analysis. Argument mining is a field of research that focuses on
the analysis of arguments, e.g., by identifying argumentative text passages and categoriz-
ing them. The automated identification and extraction of specified argument components
can help an analyst to take the participants’ opinions and suggestions into consideration.
Most related studies in the field of argument mining, e.g., Park and Cardie (2014), Liebeck
et al. (2016) and Romberg and Conrad (2021), share the common task of a two-step clas-
sification: First, they aim to identify argumentative and non-argumentative sentences.
Second, they classify argumentative sentences into argument components according to a
specified argument model. More precisely, Park and Cardie (2014) developed a frame-
work to recognize propositions in user content collected from an eRulemaking platform
and assign each proposition with respect to its verifiability to pre-defined categories.
Liebeck et al. (2016) analyzed user content from the German online participation project
Tempelhofer Feld, regarding a former airport in Berlin and its possible future use. They
classified argumentative sentences from user content as major positions (conclusions),
claims or premises. Similarly, Romberg and Conrad (2021) applied argument mining in or-
der to analyze German public participation processes that address urban planning. They
specified an argument model based on Liebeck et al. (2016) and categorized sentences as
non-argumentative, major positions or premises. Also, they compared a new approach
based on BERT (Devlin et al., 2019) with previously published approaches. Apart from
extracting argument component types, there are also studies that focus on analyzing the
argument structure and the relation between arguments, e.g, by Kwon et al. (2006) and
Cocarascu et al. (2020).
All in all, Romberg and Conrad (2021) produced encouraging results for identifying argu-
mentative sentences and classifying major positions or premises among these, however,

1www.consulproject.org

www.consulproject.org
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some edge cases have not been taken into account. The authors viewed the task of iden-
tifying major positions and premises as a traditional single-label classification problem, i.e.,
the possibility of sentences containing both major positions and premises was not consid-
ered. Nevertheless, in real-life applications sentences may contain both major positions
and premises (e.g., “The road is damaged and should be repaired.”).

Since analyzing arguments from public participation user content can play an important
role for municipal decision-making processes, this thesis will thus deal with the task of
analyzing arguments with the help of argument mining techniques. This work aims at the
classification of argumentative sentences into different classes of argument component
types and follows up on the work of Romberg and Conrad (2021). Given argumentative
sentences from citizen contributions that originate from German participation processes
in the domain of urban planning and sustainable mobility, machine learning methods are
applied in order to identify major positions and premises among these sentences. The fo-
cus lies on the case of sentences that contain both major positions and premises, i.e., the
classification task will be viewed as a multi-label classification problem, in which one in-
stance can have more than one label. For that, the public participation datasets provided
by Romberg et al. (2022) will be used. The goal is to further improve the practical use
of the earlier mentioned methods in order to provide a helpful tool for supporting the
evaluation of public processes in the domain of urban planning and beyond.

This thesis is organized as follows: First, in Section 2 the work of Romberg and Conrad
(2021) and the provided datasets by Romberg et al. (2022) are introduced. Moreover, the
research goal of this thesis is addressed. Next, problem transformation techniques for
solving the multi-label classification task are discussed and selected in Section 3. In Sec-
tion 4, machine learning algorithms for the classification problem are proposed, followed
up by the explanation of considered features for the algorithms in Section 5. Then, in Sec-
tion 6 the experimental setup for the evaluation of the models is explained and in Section
7, the proposed methods are evaluated. Finally, in Section 8 a conclusion is drawn and
an outlook on future-work is given.
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2 Previous Work

This thesis follows up on the work of Romberg and Conrad (2021) and aims at the classi-
fication of argumentative sentences into different classes of argument component types,
specifically, into major positions and premises. In this section, the datasets that were used by
the authors are described in detail along with the associated annotation scheme. Further-
more, the approaches and results are presented and shortcomings are discussed. Lastly,
the research goal of this thesis is addressed.

2.1 Description of the Dataset

Romberg and Conrad (2021) rely on the five datasets provided by Romberg et al. (2022),
which originate from German public participation processes concerning urban planning
and mobility transition. While four of the datasets focus on cycling, the latter concerns
a more general mobility concept. In the following, the different datasets are described in
more detail.

Cycling dialogues
Three of the five datasets are taken from e-participation processes concerning the im-
provement of cycling infrastructure in the German cities Bonn2, Moers3 and the Cologne
city district Ehrenfeld4. As part of the cycling dialogues, citizens were encouraged to
make suggestions and propose ideas on how to make cycling more attractive in those
cities, so that future measures can be planned. The cycling dialogues took place dur-
ing a five-week period in 2017. Citizens were able to make propositions, discuss or rate
propositions and mark concerned places on a map-based online platform. In the follow-
ing, the datasets that stem from the cycling dialogues of the cities of Bonn, Moers and
the Cologne district Ehrenfeld will be denoted as CD_B, CD_M and CD_C respectively.
CD_B contains 10,442 sentences from 2,163 contributions, CD_M contains 2,193 sentences
from 459 contributions and CD_C contains 1,704 sentences from 366 contributions.

Citizen questionnaire on cycling
In addition to the cycling dialogue for the city of Bonn, a dataset originating from a postal
survey is provided. For the postal survey, participants were chosen randomly among the
city’s population. In the questionnaire, among others, the participants were asked to
make proposals for improving cycling infrastructure. Participants had the option to fill
out the questionnaire by hand or online. The dataset containing contributions from the
postal survey for the city of Bonn, denoted as CQ_B, comprises 1,505 sentences from 1,386
contributions.

Mobility concept
The German city of Krefeld has conducted multiple e-participation processes concerning
the city’s general mobility concept since 2019. The fifth dataset, which will be denoted

2https://www.raddialog.bonn.de
3https://www.raddialog.moers.de
4http://www.raddialog-ehrenfeld.koeln

https://www.raddialog.bonn.de
https://www.raddialog.moers.de
http://www.raddialog-ehrenfeld.koeln
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as MC_K, contains citizen comments from two connected e-participation processes for
the city of Krefeld. In the first process, citizens were asked to express their opinions
regarding some citywide action plans concerning urban development, regional cooper-
ation and various forms of traffic and transport. The second process allowed citizens to
make concrete proposals regarding formulated action plans in specified city districts. In
total, MC_K includes 2,008 sentences from 337 contributions.

The five datasets comprise 17,852 annotated sentences in total, of which 15,517 sentences
are argumentative. Each dataset is given as a tsv-file that contains one entry per sen-
tence with the following information: id specifies a unique sentence id for each sentence,
document_id is the id of the document that contains the sentence and sentence_nr
is the sentence number of the sentence in the document. Entries in the column content
contain the textual content of the sentences and entries in the column code refer to the
annotation label of the sentences (“non-arg”, “mpos”, “premise” or “mpos+premise”).
For more information about the labels, see the described argumentation scheme in Sec-
tion 2.2. Furthermore, Title/text denotes whether the sentence is taken from the title
or the body text of a document and curated/single denotes whether the sentence
was curated or coded by a single person. The column dataset contains the name of the
dataset (e.g., “CD_B”) and url contains the original url of the document.

2.2 Argumentation Model

Since all datasets originate from urban planning processes, the proposed improvements
in the contributions are mostly based on infrastructure problems or planning deficits.
Romberg and Conrad (2021) follow the argumentation scheme and terminology intro-
duced by Liebeck et al. (2016), who developed an argumentation model for public par-
ticipation processes.

Liebeck et al.’s argumentation model is based on three different types of argument com-
ponents: major positions, claims and premises. They define major positions as “options for
actions or decisions that occur in the discussion”, e.g., “We should build a playground
with a sandbox.”. In other words, major positions are suggestions from citizens for im-
provements. A claim is defined as a “pro or contra stance towards a major position”, in
which citizens express their opinion regarding a suggestion, e.g., “Yes, we should defi-
nitely do that!”. Furthermore, a premise is defined as a “reason that attacks or supports a
major position, a claim or another premise”, e.g., “This would allow us to save money.”.
In contrast to Liebeck et al., Romberg and Conrad (2021) consider only major positions
and premises in their argumentation model. Claims were left out since the considered
datasets do not include feedback comments on the suggestions made by other users, i.e.,
their focus lies on the classification of major positions and premises only.

Each sentence in the provided datasets by Romberg et al. (2022) is annotated with one of
the following labels:

• non-arg marks sentences that are non-argumentative and contain no major position
or premise. However, in this work non-argumentative sentences will not be con-
sidered.
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id document_id content title/text code
3 B1592 “Könnte man aus mehreren Straßen der text mpos

Innenstadt (Am Hof, Rathausgasse, Wes-
selstraße, Am Neutor) nicht beidseitig ge-
öffnete Fahrradstraßen machen?”
(engl. “Couldn’t several streets in the city
center (Am Hof, Rathausgasse, Wesselstra-
ße, Am Neutor) be made into bicycle lanes
open on both sides?”)

4 B1593 “Radweg trifft auf Straße” title premise
(engl. “Bicycle lane meets road”)

5 B1593 “Hier wäre eine breite Einmündung ohne text mpos+premise
Bordsteinkante und Poller von Vorteil, eine
Vorfahrt für Radfahrer*innen sinvoll, da
dies eine stark befahrene Pendlerstrecke
ist.”
(engl. “Here, a wide junction without curb
and bollard would be advantageous, and a
right of way for cyclists would make sense,
as this is a busy commuter route.”)

10442 Boff10004_1 “Geradlinige Wegführung!” text non-arg
(engl. “Straight path!”)

10443 Boff10004_1 “An Ampelübergängen kreuzt sich der Rad-
& Fußgängerweg.” text premise
(engl. “At traffic light crossings, the bike &
pedestrian path crosses.”)

10444 Boff10004_1 “Das gibt oft gefährliche Situationen” text premise
(engl. “This often leads to dangerous
situations”)

Table 1: Example sentences taken from the cycling dialogue dataset CD_B and the citi-
zen questionnaire dataset CQ_B. For a better overview, irrelevant columns of the datasets
have been removed. The sentences with id 3, 4 and 5 originate from CD_B and the sen-
tences with id 10442, 10443 and 10444 from CQ_B. The sentences have been translated
into English (in parentheses).

• mpos denotes that the sentence contains a major position, i.e., an option for action
or decision.

• premise labels sentences that contain a premise, i.e., a reason that attacks or supports
a major position or another premise.

• mpos+premise indicates that the sentence contains both argument component types.

For a better understanding of the data and corresponding labels, some example sentences
from the cycling dialogue dataset CD_B and the citizen questionnaire dataset CQ_B are
shown in Table 1.

Table 2 shows the distribution of sentences among the different argument component
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CD_B CD_C CD_M CQ_B MC_K all
total 10, 442 1, 704 2, 193 1, 505 2, 008 17, 852

non-arg 1, 153 (11.0%) 197 (11.6%) 382 (17.4%) 172 (11.4%) 431 (21.5%) 2, 335

mpos 2, 589 (24.8%) 556 (32.6%) 359 (16.4%) 960 (63.8%) 892 (44.4%) 5, 356

premise 6, 438 (61.7%) 904 (53.1%) 1, 407 (64.2%) 250 (16.6%) 616 (30.7%) 9, 615

mpos+premise 262 (2.5%) 47 (2.8%) 45 (2.1%) 123 (8.2%) 69 (3.4%) 546

Table 2: Distribution of sentences among the different argument component categories
for each dataset.

types for each dataset. As earlier mentioned, non-argumentative sentences will not be
considered in this work. The multi-label mpos+premise is highly under-represented com-
pared to the single labels mpos and premise. The percentage of sentences that are labeled
with mpos+premise is the highest in the dataset CQ_B (8.2%) and the lowest for CD_M
(2.1%). Moreover, in the datasets CD_B, CD_C and CD_M, premise forms the majority
class, whereas in CQ_B and MC_K, mpos occurs most frequently. This disparity may be
due to the different types of public participation processes the datasets stem from. CD_B,
CD_C and CD_M originate from cycling dialogues, while CQ_B originates from a postal
survey and MC_K concerns a more general mobility concept. Since all five datasets are
noticeably imbalanced, this may affect the ability of the applied classification algorithms
to recognize the minority class negatively.

In the annotation process, each sentence of the datasets was annotated by three coders
and was subsequently reviewed by two supervisors in a curation step. The inter-coder
agreement was measured using Fleiss’ κ (Fleiss, 1971), which is defined as follows:

κ =
P − Pe

1− Pe

(1)

Here, Pe denotes the expected agreement by chance, while P is the overall observed
agreement between the coders. To summarize, Fleiss’ κ expresses to which degree the
amount of agreement exceeds the expected amount if all coders make random ratings
and takes values between -1 and 1. High κ values indicate a high amount of agreement.
For example, if the coders are in complete agreement, then κ = 1 holds. Negative val-
ues, on the other hand, indicate an agreement that is even smaller than the expected
agreement by chance, e.g., in the case of systematical disagreement. If there is complete
disagreement between the coders, then κ = −1 holds.
Table 3 shows the inter-coder agreement that was estimated on about 10% of the sen-
tences of each dataset. It should be noted again that non-argumentative sentences are
not considered in this work. The high average κ values for the labels mpos and premise
(0.81 and 0.84) indicate a high agreement among the codings. In contrast, the label
mpos+premise shows a lower agreement with an average κ of 0.44 for all datasets. This
may affect the ability of the classification algorithms to identify sentences that belong to
both classes of argument component types negatively.
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CD_B CD_C CD_M CQ_B MC_K all
sentences 1, 251 191 230 188 376 2, 236

Fl
ei

ss
’κ

non-arg 0.58 0.68 0.67 0.59 0.69 0.63
only mpos 0.82 0.81 0.81 0.73 0.78 0.81

only premise 0.82 0.87 0.83 0.83 0.77 0.84
mpos+premise 0.37 0.35 0.40 0.69 0.42 0.44

overall 0.76 0.80 0.77 0.72 0.73 0.77

Table 3: Number of sentences under consideration and calculated Fleiss’ κ agreement for
argument component annotation. Values for mpos and premise exclude example sentences
annotated with mpos+premise and values for mpos+premise exclude example sentences that
are annotated with mpos or premise as a single label. The Fleiss’ κ values were calculated
based on the original codings of the datasets provided by Romberg et al. (2022). Since in
this work examples labeled with mpos+premise were excluded when calculating the Fleiss’
κ values for mpos and premise, the scores differ from the tables shown in the related works.

2.3 Previous Results

The objective of Romberg and Conrad (2021) was to help automating the analysis of pub-
lic participation processes by applying argument mining techniques and identifying ma-
jor positions and premises in the contributions. For that, their argument mining task
was divided into two subtasks. First, they identified argumentative sentences from the
contributions. Next, the authors classified argumentative sentences according to their
specified argumentation scheme, differentiating between the two classes major position
and premise. In this work, the focus lies on the second task of identifying argument
component types, thus the first task will not be further discussed.

In order to classify major positions and premises among argumentative sentences,
the authors applied SVM (Cortes and Vapnik, 1995), fastText (Joulin et al., 2017), the
transformer-based model BERT (Devlin et al., 2019) and the ensemble method ECGA
(Giannakopoulos et al., 2019). SVM, fastText and ECGA had already been used in pre-
vious approaches for analyzing argument components in the domain of public partici-
pation processes, e.g., by Kwon et al. (2006), Liebeck et al. (2016) and Giannakopoulos
et al. (2019). In contrast, BERT had only been used by Cocarascu et al. (2020) on pub-
lic participation data to identify relations between argumentative sentences. However,
BERT has shown promising results for argument mining tasks in other domains, e.g., in
Chakrabarty et al. (2019).

First, the authors evaluated the classification algorithms’ performances on each of the
five datasets individually. Table 4 shows the results for each individual dataset. BERT
performed best among all methods, achieving F1 macro scores between 0.86 and 0.93.
The second best classifier was SVM, achieving F1 macro scores between 0.79 and 0.88.
For fastText and ECGA, two model variants were evaluated. One model was trained on
the original, imbalanced dataset and the other one on a modified version of the dataset,
in which the majority class was undersampled by picking random samples. In the ta-
ble, the results of the better variants are listed. Compared to BERT and SVM, fastText
and ECGA performed poorly and produced less stable results. Applying undersampling
only slightly increased the performance of ECGA. Still, ECGA showed poor results for
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SVM fastText ECGA BERT

mpos 0.82 (0.01) 0.79 (0.01) 0.78 (0.03) 0.90 (0.01)
CD_B prem 0.93 (0.01) 0.93 (0.00) 0.92 (0.01) 0.96 (0.00)

macro 0.88 (0.01) 0.86 (0.01) 0.85 (0.02) 0.93 (0.01)

mpos 0.77 (0.02) 0.74 (0.02) 0.76 (0.03)* 0.89 (0.02)
CD_C prem 0.85 (0.01) 0.86 (0.01) 0.84 (0.01)* 0.93 (0.01)

macro 0.81 (0.02) 0.80 (0.02) 0.80 (0.02)* 0.91 (0.02)

mpos 0.67 (0.03) 0.58 (0.03) 0.52 (0.08)* 0.84 (0.06)
CD_M prem 0.92 (0.01) 0.92 (0.00) 0.86 (0.05)* 0.91 (0.04)

macro 0.80 (0.03) 0.75 (0.02) 0.69 (0.06)* 0.90 (0.03)

mpos 0.83 (0.03) 0.83 (0.03) 0.84 (0.03)* 0.88 (0.02)
MC_K prem 0.75 (0.03) 0.74 (0.04) 0.74 (0.05)* 0.84 (0.03)

macro 0.79 (0.03) 0.78 (0.04) 0.79 (0.05)* 0.86 (0.03)

mpos 0.93 (0.02) 0.92 (0.01) 0.89 (0.03)* 0.97 (0.01)
CQ_B prem 0.70 (0.08) 0.58 (0.06) 0.55 (0.10)* 0.88 (0.03)

macro 0.81 (0.05) 0.75 (0.04) 0.72 (0.06)* 0.93 (0.02)

Table 4: Intra-dataset evaluation for the classification of major positions (mpos) and
premises (prem) among argumentative sentences. Scores are mean F1 values of the five
test sets obtained from a 5-fold cross-validation and standard deviation is given in paren-
theses. Model variants using undersampling are marked with an asterisk. (Romberg and
Conrad, 2021)

datasets that do not have sufficient samples in the minority class. In the case of fastText,
undersampling did not improve the performance at all.

Furthermore, Romberg and Conrad compared the behavior of each method in a cross-
dataset evaluation (cf. Figure 1) to investigate the models’ generalizability. Each clas-
sification algorithm was trained on the largest dataset CD_B and then tested on the re-
maining datasets. Additionally, all classifiers were evaluated with undersampling the
majority class. BERT achieved the best results (F1 macro scores above 0.88) and gen-
eralized very well. Both BERT variants (with and without undersampling) performed
similarly well, while the undersampling variant produced slightly more stable results.
The remaining methods, SVM, fastText and ECGA, showed weaknesses in generalizing
on the datasets MC_K and CQ_B. Applying undersampling lead to more stable results,
nevertheless, their performances were clearly outperformed by BERT.

All in all, the authors have shown that BERT outperforms previous approaches and pro-
vides comparable results among different datasets. SVM achieved the second best results,
while fastText and ECGA performed poorly compared to BERT and SVM.
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Figure 1: Cross-dataset evaluation for the classification of major positions (mpos) and
premises (prem) among argumentative sentences. Results are averaged macro F1 values
of the five models trained on CD_B. (Romberg and Conrad, 2021)

2.4 Research Goal

This thesis deals with the automatic classification of argument component types with the
help of argument mining techniques. The objective of this work is to help automating
the evaluation process of public participation processes concerning urban planning and
beyond.

The related work by Romberg and Conrad (2021) produced encouraging results for the
classification of major positions and premises among argumentative sentences. However,
sentences in real-life applications may contain both argument component types (see ex-
ample sentence with id 5 from Table 1). This edge case was not considered by Romberg
and Conrad. The authors divided argumentative sentences in either major positions or
premises and left aside sentences that are labeled with both classes. Hence, this thesis
will extend their work and focus on improving the classification of major positions and
premises while taking this edge case into account. In other words, the classification prob-
lem will be viewed as a multi-label classification task instead of a traditional single-label
classification task.

Since multi-label classification requires different strategies from single-label classifica-
tion, different techniques will be considered and applied in combination with suited clas-
sification algorithms. For training the models, the provided datasets by Romberg et al.
(2022) will be used. Similar to Romberg and Conrad (2021), the models will be trained
and tested on each dataset individually in an intra-dataset evaluation. Next, the mod-
els’ generalizability will be investigated in a cross-dataset evaluation, using one or more
datasets for training and the remaining datasets for testing. Moreover, the results of the
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multi-label classification task will be compared to the results achieved by Romberg and
Conrad for the single-label classification of major positions and premises.
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3 Multi-Label Classification

Argument component classification will be viewed as a multi-label classification problem
in this thesis. First, the multi-label classification problem is defined and distinguished
from the traditional single-label classification problem based on Herrera et al. (2016) and
Tsoumakas and Katakis (2007). Most classification algorithms do not support multi-label
classification directly, hence different strategies are required. Multi-label classification ap-
proaches are commonly divided into problem transformation methods and algorithm adaption
methods in the literature (Tsoumakas and Katakis 2007; Gibaja and Ventura 2015; Trohidis
et al. 2008). These are presented next and discussed. Eventually, suitable strategies are
selected.

3.1 Single-Label vs. Multi-Label Classification

In general, classification describes a predictive task that aims to learn a model from la-
beled data in order to predict the label or class of new, unseen examples. The attributes
of a dataset used for classification can be grouped into input features and output attributes.
The input features are the variables that will be used for the prediction and the output
attributes are the assigned labels or classes to a particular instance. According to the
number of output attributes that can be assigned to an instance, different types of classi-
fication tasks can be defined, e.g., single-label classification and multi-label classification.

In single-label classification, there is only one output attribute for each instance and it
can take any value from a pre-defined set of labels. In other words, each sample is asso-
ciated with a single label l from a set of disjoint labels L, |L| > 1. In case there are only
two possible labels (|L| = 2), then one also speaks of binary classification. In most cases,
the labels of a binary classification problem are referred to as the positive and the negative
class or simply as true and false. A typical binary classification problem is, for example,
spam filtering, for which a classifier can be trained that differentiates between spam and
non-spam emails. Also, Romberg and Conrad (2021) viewed the classification of major
positions and premises among argumentative sentences as a binary classification task. In
case there are more than two labels (|L| ≥ 2), then one also speaks of multi-class classifica-
tion.

On the other hand, in multi-label classification each sample is associated with a subset
of labels Y ⊆ L instead of only a single label. Usually, the associated labels of the data
instances are represented as a vector of length |L|, in which each element is a binary value
that indicates if the corresponding label is assigned to the instance or not. For example,
if there are two labels l1 and l2 and an instance is only labeled with l2, then the corre-
sponding vector representation of the associated labels is ( 0

1 ). Multi-label classification
is commonly used for text-categorization tasks, in which documents can have several,
not mutually exclusive categories. This is also the case for our classification task. As
mentioned before, the objective of this work is to identify major positions and premises
among argumentative sentences and to additionally consider the case of sentences that
contain both argument component types. Hence, the samples can be associated with two
labels, turning our classification problem into a multi-label classification task.
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(a) single-label classification (b) multi-label classification

Figure 2: Single-label classification vs. multi-label classification. Single-label classifiers
take an instance and produce exactly one output label, whereas multi-label classifiers
produce one or multiple output labels. (Kang and Bai, 2016)

In contrast to single-label classification, the classification algorithms used for multi-label
classification must be able to make multiple predictions for each instance. Figure 2 il-
lustrates the difference between single-label and multi-label classification. A single-label
classifier takes an instance and outputs always exactly one label, whereas a multi-label
classifier can output several labels at the same time. However, most classification algo-
rithms are single-label classifiers and are not able to do multi-label classification directly.
Hence, for multi-label classification different strategies are required. Possible strategies
include transforming the original dataset in order to be able to apply one or more single-
label classifiers or to adapt the single-label classification algorithm itself to do multi-label
classification. Thus, multi-label classification methods are divided into problem transfor-
mation methods and algorithm adaption methods. These methods are further described and
discussed in Section 3.2 and 3.3.

3.2 Problem Transformation Methods

Problem transformation methods (PTMs) transform a multi-label classification problem
into one or multiple single-label classification problems. In the following, five different
PTMs are described. Tsoumakas and Katakis (2007) introduced the problem transforma-
tion methods PTM1 to PTM4 and Read et al. (2009) introduced PTM5.
In order to exemplify these methods, we will consider the following multi-label dataset
that consists of three made-up example sentences belonging to at least one of the classes
major position (mpos) and premise:

ex. content mpos premise
1 “The bicycle lane should be expanded.” x
2 “The road surface is uneven.” x
3 “Design wider bicycle lanes; they are too narrow.” x x

Table 5: Multi-label dataset that consists of three examples. The examples belong to one
or both of the following classes: major position (mpos) or premise.

PTM1
A trivial way to transform a multi-label classification problem into a single-classification
problem is by randomly selecting one label of the multiple labels of each multi-label
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instance.
Table 6 shows the resulting dataset after applying PTM1 on the example dataset from
Table 5. Since example 3 was a multi-label example, only one of the two labels is selected:

ex. content mpos premise
1 “The bicycle lane should be expanded.” x
2 “The road surface is uneven.” x
3 “Design wider bicycle lanes; they are too narrow.” x

Table 6: Transformed dataset after applying problem transformation method PTM1. For
each multi-label example, one label is selected (randomly).

A major disadvantage of this method is that it discards a lot of information content of the
original multi-label data. The trained model will not be able to identify sentences that
contain both major positions and premises, as the training examples originally marked
with both labels were turned into single-label examples. Since we aim to classify and
label multi-label sentences accordingly, this method will not be further considered in this
work.

PTM2
Another trivial approach to solve a multi-label classification problem is by simply dis-
carding every multi-label instance from the dataset.
Table 7 shows the resulting dataset after applying PTM2 on the running example dataset.
Example 3 was a multi-label example, hence it is removed from the dataset:

ex. content mpos premise
1 “The bicycle lane should be expanded.” x
2 “The road surface is uneven.” x

Table 7: Transformed dataset after applying problem transformation method PTM2.
Multi-label examples are removed from the dataset.

However, by removing all example sentences that contain both major positions and
premises, a lot of useful information is discarded again. As for PTM1, the trained model
will not be able to identify sentences that contain both major positions and premises since
all multi-label examples were removed from the training data. Hence, PTM2 will not be
further considered.

PTM3 (Label Power-Set)
A different approach, also known as the label power-set method, is to consider each differ-
ent set of labels of the multi-label dataset as a single label. The goal is to learn a single-
label classifier H : X → P (L) that maps an instance x ∈ X to a member of the power set
P (L) of label set L.
Table 8 shows the resulting transformed dataset after applying the label power-set
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method on the running example dataset. Since we have two labels (mpos and premise),
P (L) consists of three label combinations: mpos, premise, and (mpos ∧ premise). For each
label-combination, a separate class is generated. Example 3, which was marked with
both of the labels mpos and premise, belongs now to the class (mpos ∧ premise):

ex. content mpos premise (mpos ∧ premise)
1 “The bicycle lane should be expanded.” x
2 “The road surface is uneven.” x
3 “Design wider bicycle lanes; they are x

too narrow.”

Table 8: Transformed dataset after applying problem transformation method PTM3 (label
power-set). Each label combination is considered as a separate class.

One disadvantage of label power-set is that it may lead to datasets with a large number
of classes (2|L| − 1) and only few examples per class. Read et al. (2008) also mention
that this method may lead to overfitting because it can only classify examples with label
combinations observed in the training data. However, the provided datasets by Romberg
et al. (2022) have two labels, which would lead to only three classes. Also, all classes are
represented in the datasets. Therefore, this approach will be applied. Nevertheless, it
should be noted that the label combination (mpos ∧ premise) is under-represented in all
datasets compared to the single labels, which may affect the ability of the classifier to
recognize this particular class negatively.

PTM4 (Binary Relevance)
PTM4, also called binary relevance method, is the most commonly used problem trans-
formation method. It decomposes the multi-label classification problem into separate,
binary single-label classification problems. This method learns one binary classifier for
each label l ∈ L, i.e., in total |L| classifiers: Hl : X → {l,¬l}. The multi-label dataset
is transformed into |L| datasets that contain all examples of the original dataset. In the
transformed datasets, examples are labeled as l, if the labels of this particular example in
the original dataset contained label l. Otherwise, the example is labeled as ¬l. In order to
classify a new instance x, binary relevance outputs the union of the labels that are output
by all classifiers: H(x) = ∪l∈L{l} : Hl(x) = l.
Table 9 shows the transformed dataset after applying binary relevance. For each of the
labels major position and premise, a separate dataset is generated that contains all of the
examples. In both datasets, each example is marked with the respective label l or ¬l,
depending on the labels of the example in the original dataset, e.g., example 1 was la-
beled with mpos only and is now labeled with mpos and ¬(premise) in the corresponding
datasets.

In contrast to label power-set, binary relevance does not tend to overfit label combina-
tions because it does not expect examples to be only associated with label combinations
that occurred in the training dataset (Read et al., 2011). Moreover, since label combina-
tions are not considered as separate classes, having less examples for a particular label
combination does not affect the ability of the classifier to recognize that class. On the
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ex. content mpos ¬(mpos)
1 “The bicycle lane should be expanded.” x
2 “The road surface is uneven.” x
3 “Design wider bicycle lanes; they are too narrow.” x

(a) Dataset for the label major position (mpos).

ex. content premise ¬(premise)
1 “The bicycle lane should be expanded.” x
2 “The road surface is uneven.” x
3 “Design wider bicycle lanes; they are too narrow.” x

(b) Dataset for the label premise.

Table 9: Transformed dataset after applying problem transformation method PTM4 (bi-
nary relevance). For each label, a separate dataset is generated that contains all of the
examples.

other hand, binary relevance assumes that the labels are mutually exclusive and ignores
any underlying relations between the classes, which may be a disadvantage in the case of
correlating and overlapping classes. Per definition, major positions and premises are not
overlapping, but the possibility that both argument component types have some form of
relationship cannot be excluded.

In order to determine if there is any association between the classes major position and
premise in the datasets, Cramér’s V (Cramér, 1946) was calculated, which measures the
association between two nominal variables and is based on Pearson’s chi-squared test
(Pearson, 1900). In order to calculate Cramér’s V for the classes, a 2×2 contingency table
was generated that displays the frequency distribution of the classes.
Let χ2 be the value of the chi-squared statistic, n the total number of observations, k the
number of columns in the contingency table and m the number of rows. Cramér’s V is
defined as follows: (Cleff, 2008)

V =

√
χ2

n · (min(k,m)− 1)
(2)

The measure takes values between 0 and 1, while values close to 0 indicate no associa-
tion. According to Akoglu (2018), values above 0.25 represent a very strong association.
Table 10 shows the calculated Cramér’s V values for each of the five datasets. The cal-
culated Cramér’s V values for the datasets lie between 0.50 and 0.72, hence the classes
major position and premise have a very strong association in all datasets. The datasets
CD_B and CD_M have noticeably higher Cramér’s V values (above 0.7) compared to the
remaining datasets.

However, despite being commonly criticized in the literature because of its disadvantage
in terms of related classes, Luaces et al. (2012) have shown that the binary relevance
method can still lead to good results when a correct implementation of the method is
used and an appropriate base learner is selected. Therefore, this approach will still be
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CD_B CD_C CD_M CQ_B MC_K avg.
Cramér’s V 0.70 0.55 0.72 0.50 0.54 0.60

Table 10: Calculated Cramér’s V values for each dataset in order to determine the asso-
ciation between the classes major position and premise.

applied on our multi-label classification task.

PTM5 (Classifier Chains)
Read et al. (2009) introduced a problem transformation method called classifier chains,
which is based on the binary relevance method, but takes possible relations between the
classes into account. This method forms a chain h = (h1, ..., hL) of binary classifiers, one
for each label. Each classifier hj in the chain learns to predict, whether an instance is asso-
ciated with the jth label or not. In contrast to binary relevance, each classifier additionally
takes all prior binary relevance predictions into account by extending the features with
binary values that indicate, which of the previous labels were assigned to the instance.
Thereby, label information is passed between the classifiers. The transformed dataset af-
ter applying classifier chains on the running example dataset is identical to Table 9, which
was generated by binary relevance.

Since classifier chains includes the advantages of the problem transformation method
binary relevance while taking potential relations between the classes into account, this
method is selected as well to be applied on our multi-label classification task.

3.3 Algorithm Adaptation Methods

While problem transformation methods are algorithm independent, algorithm adapta-
tion methods contain methods that extend existing single-label classification algorithms
in order to handle multi-label data directly (Trohidis et al., 2008). In other words, instead
of transforming multi-label data for a single-label classifier, the single-label classifier it-
self is adapted to handle multi-label data.
Algorithm adaption methods have the advantage that multi-label data can be passed to
the models directly without having to transform it. However, although algorithm adap-
tion methods are adaptations of specific algorithms, at their core they are often based on
problem transformation methods (Tsoumakas and Katakis, 2007). Furthermore, the flex-
ibility of problem transformation methods allows them to be applied on any classifier,
providing a wider range of applicable machine learning algorithms for the multi-label
classification task. Therefore, algorithm adaptation methods are not further considered
in this work.
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4 Methods

The considered machine learning algorithms for the multi-label classification of major
positions and premises among argumentative sentences are SVM, BERT, DistilBERT, XG-
Boost, fastText and ECGA. In the following, these methods are further described and
discussed. Eventually, suitable methods among these are selected.

4.1 SVM

SVM (Cortes and Vapnik, 1995) stands for Support Vector Machine and is originally a bi-
nary classifier that separates data points into two classes by constructing a hyperplane as
a decision boundary. The idea of the SVM classifier is to find a hyperplane that optimally
separates the data into two classes, such that the distance between the closest data points
from each class, the margin, is as large as possible. The data can be separated linearly in
the input space, which is referred to as a linear SVM, or it can be mapped non-linearly into
a higher-dimensional space with a mathematical technique called kernel trick. Since data
is usually noisy and data points from different classes are not always strictly separable,
some additional properties have to be considered in order to grant a high generalization.

Liebeck et al. (2016) proposed the use of SVMs for the classification of argument com-
ponent types and Romberg and Conrad (2021) used SVMs as well for the single-label
classification of major positions and premises, relying on the best SVM setup by Liebeck
et al. and achieving satisfactory results. Hence, this method is chosen to be applied as a
base learner for our multi-label classification task in combination with the selected prob-
lem transformation methods mentioned in Section 3.2.

In the following, the basic concepts of the SVM classifier such as the construction of the
hyperplane, the kernel trick and regularization are explained based on Cortes and Vapnik
(1995) and Müller and Guido (2016).

4.1.1 Hyperplane Construction

Consider the case of linearly separable training data without errors. Given a set of labeled
data points (x1, y1), ..., (xl, yl) with labels yi ∈ {−1, 1}, there exists a vector w and a scalar
b, such that the following constraints are satisfied:

w · xi + b ≥ +1, if yi = +1 (3)
w · xi + b ≤ −1, if yi = −1 (4)

The constraints can be summarized as follows:

yi(w · xi + b) ≥ 1, i = 1, ..., l (5)

Then, an optimal hyperplanew0x+b0 can be found that separates the data with a maximal
margin. In case the data is linearly separable and no misclassification is allowed, this is
referred to as hard margin classification.

However, in most cases the data is not linearly separable without error. In this case, the
goal is to separate the data with a minimal number of errors while keeping the margin



4 METHODS 19

(a) hard margin classification (b) soft margin classification

Figure 3: Difference between hard margin and soft margin classification. In hard margin
classification, an optimal hyperplane is constructed that separates the data points into
two classes without error while maximizing the margin, whereas in soft margin classi-
fication errors are allowed. The different colors represent the associated classes of the
data points. The data points defining the margin of the largest separation between the
two classes (marked with a thick rim) are called support vectors. (Shrivastav and Ramudu,
2020)

as large as possible. This procedure is called soft margin classification. For that, a slack
variable ξi ≥ 0 with i = 1, .., l is introduced that corresponds to the distance between
the data point xi and the margin of the associated class if xi lies on the wrong side of the
margin, i.e., on the side that belongs to the other class. If the data point lies on the correct
side, then ξi is set to zero. In the case of a soft margin classification, the constraints in
equation 5 are adapted in order to allow errors:

yi(w ∗ xi + b) ≥ 1− ξi, i = 1, ..., l (6)

The difference between a hard margin and soft margin classification is illustrated in Fig-
ure 3. In hard margin classification, no data points are allowed to lie within the margin
or on the wrong side of the decision boundary, i.e., no misclassification is allowed. On
the other hand, in soft margin classification misclassifications are allowed.

4.1.2 The Kernel Trick

A linear SVM can be quite inflexible in low-dimensional spaces, as it can only separate
data points using a line. However, if a linear decision boundary does not exist, the data
can be mapped into a higher dimensional feature space instead, where a linear decision
boundary can be found. This is achieved using a mathematical trick called kernel trick.
The kernel trick allows to learn a classifier in a higher-dimensional feature space without
having to compute the larger representation of the data points. Instead, the distances in
the higher-dimensional space between data points are calculated directly. The difference
between a linear SVM and a kernelized SVM is illustrated in Figure 4, which shows the
found decision boundaries for an example dataset that is not linearly-separable. The
kernelized SVM finds a non-linear decision boundary that successfully separates the data
points of the different classes.
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(a) linear SVM (b) kernelized SVM

Figure 4: On the left, the decision boundary found by a linear SVM for a non-linearly
separable example dataset is shown. The triangles and circles represent the associated
classes of the data points. On the right, the same decision boundary is shown as a func-
tion of the original two features using the kernel trick. (Müller and Guido, 2016)

Gaussian kernel
There are different kernel functions for applying the kernel trick. A popular example is
the radial basis function (RBF), also called the Gaussian kernel. Let x1 and x2 be two data
points. The hyperparameter γ controls the width of the Gaussian kernel, i.e., how far the
influence of a single training example reaches. Low values for γ mean that the influence
reaches far and high values correspond to a low reach. Using the Gaussian kernel, the
distance between x1 and x2 is measured as follows:

krbf = exp(−γ||x1 − x2||2) (7)

Liebeck et al. (2016) and Romberg and Conrad (2021) applied a kernelized SVM with
a Gaussian kernel for the classification of argument component types, which is why a
kernelized SVM with a Gaussian kernel is also chosen in this work.

4.1.3 Regularization

The SVM classifier is regularized with a trade-off hyperparameter C in order to avoid
overfitting. Especially in higher dimensions, guarding against overfitting becomes more
important. A lower value forC leads to a larger margin, but more data points are allowed
to be outside the own class boundary. On the other hand, a higher value for C puts
more importance on classifying each data point correctly, leading to a smaller margin.
However, in the case of a SVM with a Gaussian kernel, the behavior of the model is
also sensitive to the hyperparameter γ. If γ is set too large, then in the worst case the
influence of a support vector would not reach any further training examples and thus
regularization with the hyperparameter C would not help to avoid overfitting.

The impact of the hyperparametersC and γ using a SVM with a Gaussian kernel is shown
in Figure 5 for an example dataset. A small value for C leads to a more restrictive model,
where the data points have less influence on the created decision boundary. On the other
hand, a higher value for C allows the data points to have more influence and bend the
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Figure 5: Decision boundaries and support vectors for different settings of the hyperpa-
rameters C and γ using the Gaussian kernel. The triangles and squares represent the as-
sociated classes of the data points. Support vectors are marked with a thick rim. (Müller
and Guido, 2016)

decision boundary. A smaller γ value leads to a larger radius for considering points, cre-
ating a model with smooth decision boundaries, whereas a larger value leads the model
to pay more attention to single points.

Since C and γ influence the found decision boundaries by the SVM model and thus have
a strong impact on the performance, the goal is to find an optimal setting for those hy-
perparameters. Therefore, different settings for C and γ will be tested in experiments,
relying on the considered values by Romberg and Conrad (2021).

4.2 BERT

BERT (Devlin et al., 2019) stands for Bidirectional Encoder Representations from
Transformers and is a transformer-based language representation model developed by
Google AI in 2018. The basic concept of BERT is a two-step training approach: In the
pre-training step, deep bidirectional representations from unlabeled text are trained over
different pre-training tasks. In the fine-tuning step, the pre-trained model is first initial-
ized with the parameters obtained from pre-training, which are then fine-tuned using
labeled data in order to adapt the model to a specific NLP task by adding an additional
task-specific layer.

The advantage of this two-step training approach is that it reduces the need for develop-
ing elaborate task-specific architectures and that only few parameters need to be learned
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from scratch. Moreover, BERT achieved state-of-the-art results for various NLP tasks
such as question answering and language inference, outperforming many task-specific
architectures (Devlin et al., 2019). Furthermore, Romberg and Conrad (2021) applied
BERT for the single-label classification of major positions and premises, achieving highly
promising and stable results over the different datasets. Thus, BERT is selected to be
applied on our multi-label classification task as well.

In the following, the model architecture of BERT, the input and output representations,
the pre-training step and the fine-tuning step are described in more detail based on De-
vlin et al. (2019). Furthermore, different German BERT and BERT-based models are se-
lected for this work.

4.2.1 BERT Model Architecture

A characteristic of BERT is that the pre-trained model architecture and the final model
architecture have only minimal differences. BERT’s architecture is based on a multi-layer
bidirectional transformer encoder and its implementation is almost identical to the origi-
nal implementation of a transformer, which is described by Vaswani et al. (2017). Devlin
et al. provide two models of different sizes: BERT-base and BERT-large. BERT-base con-
sists of 12 encoder layers stacked on top of each other, while BERT-large consists of 24
of such layers. Moreover, BERT is able to represent both a single sentence and a pair of
sentences as an input. In the following, the original model architecture of a transformer
is described in more detail.

Transformer
A transformer is a neural sequence transduction model. It takes a text as an input se-
quence and outputs another text, e.g., for translation tasks. Like most other sequence
transduction models, transformers are based on an encoder-decoder structure, contain-
ing a stack of N=6 identical encoder layers and a stack of N=6 identical decoder layers.
The architecture of a transformer with its encoder and decoder stacks is illustrated in Fig-
ure 6.
First, the transformer converts an input sequence of symbol representations (x1, ..., xn)
into embeddings using learned embeddings. Then, the embeddings are fed to the en-
coder stack, which maps them to a sequence of continuous encoded representations
z = (z1, ..., zn) that captures the meaning and position of each word. Next, the encoded
representation z is fed into the decoder stack, which processes it into an output sequence
y = (y1, ..., ym) of symbols. At each step, the transformer considers the previously gener-
ated output symbols for producing the next output symbol.
In contrast to other sequence transduction models, transformers are solely based on atten-
tion mechanisms. Attention is a technique that enables a model to focus on other parts of
the sequence that are closely related and relevant while processing a word. An attention
layer performs an attention function, which maps a query and a set of key-value pairs, all
represented as vectors, to an output vector. In particular, the used attention function in
the transformer is called scaled dot-product attention.
Let Q, K and V be sets of queries, keys and values, packed into matrices. Let dk be the
dimension of the queries and keys, and dv the dimension of the values. The output of the
scaled dot-product attention function is a vector containing weights for each value and
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Figure 6: The transformer model architecture. The encoder stack is represented on the
left and the decoder stack on the right. Nx (N -times) indicates multiple blocks. (Vaswani
et al., 2017)

is computed as follows:

attention(Q,K, V ) = softmax(
QKT

√
dk

)V (8)

In words, the scaled dot-product attention computes the dot-products of the query with
all keys and divides each dot-product by

√
dk. Then, a softmax function is applied, which

calculates the weights on the values.
Let x be a vector of real numbers of length n. The softmax function, also called normalized
exponential function, takes an entry xi of the vector x as an input and outputs a probability
(a real number between 0 and 1), while the sum of all outputs for each entry of x is 1:
(Zeng et al., 2020)

softmax(xi) =
exp(xi)∑n

i=1 xi
(9)

Instead of performing only a single attention function by one attention head, it is more
advantageous to perform several similar attention calculations by multiple attention
heads and combining their information. This technique is called multi-head attention. In
this technique, the queries and keys are each linearly projected h times with learned pro-
jections to dk, and the values h times to dv. On each of these projections an attention
function is performed in parallel, creating dv-dimensional outputs, which are then con-
catenated and projected again. The scaled dot-product attention and multi-head attention



4 METHODS 24

Figure 7: On the left, scaled dot-product attention is illustrated, which performs only a
single attention. On the right, multi-head attention is shown, which consists of h atten-
tion heads running in parallel. (Vaswani et al., 2017)

are illustrated in Figure 7.
Each layer of the encoder stack of the transformer (cf. Figure 6) has two sub-layers con-
sisting of a multi-head attention mechanism and a simple feed-forward network. The
layers of the decoder stack include a third sub-layer in addition to the two sub-layers,
which performs multi-head attention over the output of the encoder.

4.2.2 BERT Input and Output Representation

As mentioned before, BERT is able to represent both a single sentence and a pair of sen-
tences, e.g, in the form 〈question, answer〉 for question answering tasks. In the case of
classification tasks, only single sentences are considered. Note that here a sentence refers
to any text sequence.

To the beginning of each input, BERT adds a special classification token [CLS]. The last
hidden state of BERT corresponding to this token is used for classification tasks. In the
case of sentence pairs as an input, the sentences are put together in a single input se-
quence using a special separator token [SEP] to mark the end of each sentence. Moreover,
BERT tokenizes the input text. Each token of a sentence is represented as a sum of the
token embedding, the segmentation embedding and the position embedding of the cor-
responding token, which is visualized in Figure 8 given a pair of example sentences as
an input. For the token embeddings, BERT uses WordPiece embeddings (Wu et al., 2016),
which has a vocabulary of 30,000 tokens. The segment embedding of a token indicates,
which sentence the token belongs to, whereas the position embedding shows at which
position of the input text the token occurs. The symbols ## before a token indicate that
the corresponding token is a subtoken belonging to the token before, e.g., in the example,
the original token playing was tokenized into the subtokens play and ##ing.
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Figure 8: Input representation of BERT. E is the input embedding. Each token of a sen-
tence is represented as a sum of the token embeddings, the segmentation embeddings
and the position embeddings. (Devlin et al., 2019)

4.2.3 Pre-Training BERT

In the pre-training step, BERT is trained on a large corpus using two unsupervised tasks:
masked language model and next-sentence prediction. The original BERT implementation
is trained on the BooksCorpus data (Zhu et al., 2015) and on English Wikipedia5 texts,
making a total of about 3,300M words. The pre-training step is illustrated on the left side
of Figure 9. In the following, the unsupervised training methods are further explained.

Masked Language Model (MLM)
In the masked language model (MLM) task, the model randomly masks some percentage
of the input tokens, replacing the original token with a [MASK] token. Then, the model
aims to predict the vocabulary id of the masked token based only on its context. This
method allows the model to fuse the left and the right context and produce deep bidi-
rectional representations, capturing the relationships between the words. Furthermore,
in the masking procedure some words are kept unchanged, which helps to bias the rep-
resentation towards the actual token. The masking procedure forces the model to keep
a distributional contextual representation of every input token since the model does not
know which tokens have been replaced by random tokens and which tokens it will have
to predict.

Consider the following example sentence taken from the dataset CQ_B (cf. Table 1 in
Section 2.2) as an input to the MLM model:

[CLS] Das gibt oft gefährliche Situationen . [SEP]

For the masking procedure, 15% of the input tokens are randomly chosen (e.g., oft), of
which 80% are replaced with the [MASK] token. For example, in case the chosen token is
replaced with [MASK], then the example input looks as follows:

5https://www.wikipedia.org

https://www.wikipedia.org
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Figure 9: Pre-training (on the left) and fine-tuning (on the right) procedures for BERT. The
architectures used for pre-training and fine-tuning have the same structure, except for the
output layer. Each down-stream task, e.g., named entity recognition (NER) or question
answering (sQuAD), has a separate fine-tuned model, although they are all initialized
with the same pre-trained hyperparameters. (Devlin et al., 2019)

[CLS] Das gibt [MASK] gefährliche Situationen . [SEP]

10% of the randomly chosen tokens are replaced with a random word and another 10%
stay unchanged. In the following example, oft is replaced by the random token Haus:

[CLS] Das gibt Haus gefährliche Situationen . [SEP]

Next-Sentence Prediction
In order to capture the relation between the sentences, a next-sentence prediction task is
performed. Given two sentences A and B, the model learns to predict whether B is the
next sentence after A and returns the label IsNext or NotNext. This task can be demon-
strated with the following example sentences taken from the dataset CQ_B (cf. Table 1 in
Section 2.2):

Input 1:
[CLS] An Ampel [MASK] ##gängen kreu ##zt sich der [MASK] - &
Fußgänger ##weg . [SEP] Das gibt [MASK] gefährliche Situationen
[SEP]

Label for Input 1:
IsNext

Input 2:
[CLS] An Ampel [MASK] ##gängen kreu ##zt sich der [MASK] - &
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Figure 10: Fine-tuning BERT on a multi-label classification task. (Zahera et al., 2019)

Fußgänger ##weg . [SEP] Gera ##dl ##ini [MASK] Weg ##führung !
[SEP]

Label for Input 2:
NotNext

The two sentences are separated using the [SEP] token. In the first example, the model
predicts that the second sentence comes next after the first one. In the second example,
the model predicts that the second sentence is not the next sentence.

4.2.4 Fine-Tuning BERT

The purpose of the fine-tuning step is to adjust the model to various downstream lan-
guage processing tasks, e.g., to named entity recognition or question answering, by
adding an additional, task-specific output layer. For that, the model is first initialized
with the hyperparameter values obtained from pre-training. Then, these parameters are
fine-tuned using labeled data for the specific task. Compared to the pre-training step, the
fine-tuning step is less expensive.

For classification tasks, which is the present case in this work, the final hidden state cor-
responding to the special classification token [CLS] is used as the aggregate sequence
representation. At the output, this representation is fed into a dense layer with a softmax
activation function for predicting the class label. However, in order to perform multi-
label classification, a dense layer with a sigmoid activation function is chosen that returns
the probabilities of all classes instead of only the class label with the highest probability
among all (Zahera et al., 2019). Then, a threshold can be specified (in this work 0.5) to
output the labels that have a probability greater than the specified threshold. Hence, for
BERT the use of a problem transformation method is not required in order to perform
multi-label classification. The fine-tuning procedure for a multi-label classification task
is illustrated in Figure 10.
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4.2.5 BERT Models

The original BERT model by Devlin et al. (2019) is trained for English texts, however, in
this work only German texts are considered. The most popular German BERT model is
GermanBERT6, which is provided by deepset7, an open source framework for natural
language processing. This model was trained on German Wikipedia texts8, legal doc-
uments from OpenLegalData9, and news texts. Romberg and Conrad (2021) chose the
case-sensitive GermanBERT model, i.e., the input text is not converted to lower case be-
fore applying the model.

In late 2020, deepset released another German BERT model called GBERT (Chan et al.,
2020), which was additionally trained on the German OSCAR corpus (Suárez et al., 2019)
and the OPUS dataset (Tiedemann, 2012), a collection of texts from movies, parliamentary
speeches, and books. GBERT is also available in a larger version with significantly more
parameters, about three times as many as the original model. However, Chan et al. (2020)
have shown that the performance of the larger model was not remarkably higher than the
performance of the original model. Also, Chan et al. remarked that the large model trains
on much more tokens than the base model due to its different training process and that
the advantages of the large model cannot be quantified as easily. Due to these reasons
and limited computational resources such as time and memory, only the base model will
be considered in this work.

Another considered model in this work is the BERT-based DistilBERT model (Sanh et al.,
2019). DistilBERT is significantly smaller and faster than the regular BERT models. The
model is learned from the original BERT model using knowledge distillation (Hinton et al.,
2015), a compression technique for making compact yet fast and highly accurate models.
The regular BERT-Base models contain 110M parameters, whereas DistilBERT contains
66M parameters and is thus more than 40% smaller. In general, the architecture of Distil-
BERT is equal to the original BERT’s architecture with some adjustments, e.g., token-type
embeddings and the pooler layer are removed. Also, the number of layers in DistilBERT
is reduced by a factor of 2. Furthermore, many operations in the transformer architecture
are optimized. In an experiment, Sanh et al. (2019) have shown that DistilBERT retains
about 97% of the original BERT’s performance while being 60% faster. Sanh et al. have
also shown that their compressed models are small enough to run on mobile devices.
Hence, in this work German DistilBERT10 will be applied as well in order to compare its
performance and efficiency with the regular BERT models.

All of these BERT and DistilBERT models are available on the machine learning platform
Hugging Face11.

6https://www.deepset.ai/german-bert
7https://www.deepset.ai
8https://de.wikipedia.org
9https://de.openlegaldata.io/

10https://huggingface.co/distilbert-base-german-cased
11https://huggingface.co/models

https://www.deepset.ai/german-bert
https://www.deepset.ai
https://de.wikipedia.org
https://de.openlegaldata.io/
https://huggingface.co/distilbert-base-german-cased
https://huggingface.co/models
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4.3 XGBoost

XGBoost (T. Chen and Guestrin, 2016) stands for eXtreme Gradient Boosting. Boosting
describes a method that combines various simple and weak models to make better pre-
dictions. Weak models are models that perform slightly better than making random pre-
dictions. In boosting, models are added sequentially in a greedy procedure until no more
improvements in the predictions occur. In the case of XGBoost, decision trees are used as
models, which are added by a special gradient algorithm called gradient descent algorithm.

In Schaefer and Stede (2020), XGBoost was applied on German tweets for argument com-
ponent mining in the domain of climate change. Their argumentation model slightly
differs from ours, as they differentiate between claims (a standpoint towards a topic) and
evidences (unit that supports or attacks a claim). However, Schaefer and Stede achieved
promising results (robust F1 scores around 0.8). XGBoost is selected to be applied in this
work since it would be interesting to find out whether the model can achieve similarly
good results for the detection of major positions and premises and whether it can com-
pete with the other selected methods. In order to perform multi-label classification with
XGBoost, it is used in combination with the selected problem transformation methods
mentioned in Section 3.2.

In the following, the basic concepts of XGBoost such as decision trees, the gradient
descent algorithm and two methods for preventing the model from overfitting are ex-
plained in more detail based on T. Chen and Guestrin (2016) and Müller and Guido
(2016).

4.3.1 Decision Trees

XGBoost is based on an ensemble of decision trees. Decision trees are binary trees, i.e.,
data structures in which each node has at most two children, which learn simple deci-
sion rules in the form of “if/else” questions called tests in order to perform classification
tasks. For example, a test could be “is feature i greater than value a?”. The goal is to
learn a hierarchy consisting of as few tests as possible while making correct predictions.
During training, the model searches over all possible tests to find the ones that are most
informative for the classification.
In a decision tree, the inner nodes represent the tests and the leaves one of the classes.
In order to assign an instance to a class, the tree is traversed from the root to a leaf. To
build a decision tree during training, the algorithm searches in a recursive process over
all possible tests to find those that lead the fastest to the determination of the associated
classes.

Figure 11 shows the steps of building a decision tree for an example dataset. The data
points are split by a test such that as many data points as possible from the same class lie
in the same region. The corresponding decision trees record in the nodes which tests were
done to split the data points. In the leaves, the number of data points associated to each
class that lie within a partition is recorded. Since both partitions after the first split still
contain data points from different classes (cf. Figure 11a), the data points continue to be
separated according to this scheme until each partition contains only data points from the
same class. Figure 11b shows the final result of the partitioning and the corresponding
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(a) Decision boundaries and corresponding decision tree with depth 1.

(b) Final decision boundaries and a part of the corresponding decision tree.

Figure 11: Recursive process of building a decision tree for an example dataset. The
recursive process is continued until each partition contains only data points from the
same class. The triangles and circles represent the associated classes of the data points.
(Müller and Guido, 2016)

decision tree.

4.3.2 Gradient Descent Algorithm

In boosting, models are added to an ensemble of learners sequentially until no more im-
provements in the predictions occur. Each learner learns from the mistakes of the pre-
vious learner. Gradient boosting is a boosting technique that uses the gradient descent al-
gorithm in order to add the models. In the following, gradient boosting for tree-based
models is described.

Given a dataset with n examples and m features D = {(xi, yi)} ( |D| = n, xi ∈ Rm and
yi ∈ R) and an independent set of regression trees F = {f(x) = wq(x)} (w ∈ RT ) with tree
structure q : Rm → T . Tree structure q maps an example to a leaf index. Let T be the
number of leaves. Regression trees are decision trees, where the leaves are labeled with
a continuous score. Here, wi represents the score on the ith leaf. An ensemble model
consisting of K regression trees uses K additive functions for predicting the output:

ŷi = φ(xi) =
K∑
k=1

fk(xi), fk ∈ F (10)
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Given an example, the final prediction is calculated by summing up the output scores of
each regression tree.

Furthermore, the goal is to make the model learn a set of functions that are simple and
predictive. Let l be a loss function that is differentiable and convex, which measures the
difference between prediction ŷi and target value yi. The objective is to minimize the
following regularized term:

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), where Ω(f) = γT + 1
2λ||w||

2 (11)

Ω penalizes the complexity of the regression tree functions and helps to smooth the
learned weights in order to avoid overfitting. However, the regularization term includes
functions as parameters, hence, it cannot be optimized using traditional optimization
methods in the Euclidean space. In gradient tree boosting, the model is trained greedily
instead by adding functions that minimize L(φ) and improve the model the most. Let
ŷ
(t)
i be the prediction of the ith instance at the tth iteration. A function ft is added to

minimize the following term:

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (12)

This term is minimized using approximation and gradient statistics.

Furthermore, the quality of a tree is determined by using gradient statistics. Let gi =
∂ŷ(t−1) l(yi, ŷ

(t−1)) and hi = ∂2
ŷ(t−1) l(yi, ŷ

(t−1)) be the first and second order gradient statis-
tics on the loss function l. Let Ij = {i|q(xi) = j} be the instance set of leaf j. In order to
measure the quality of a tree structure q at iteration step t, the first order and second order
gradient statistics are summed up on each leaf and then the following scoring formula is
applied to get the quality score:

L̃(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT (13)

The smaller the score is, the better the quality of the tree structure is. The gradient descent
algorithm starts from a single leaf and iteratively adds branches to the tree, since it is
usually not possible to enumerate all possible tree structures.

Let IL and IR be the instance sets of the left and right nodes after a split (test) and I =
IL ∪ IR. For evaluating the split candidates of the trees, the reduction of the loss after
splitting is calculated:

Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
+

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ (14)

The gradient descent algorithm is demonstrated in 12 based on an example with two
classes. The illustrated ensemble learner (cf. Figure 12a) consists of two regression trees.
The inner nodes represent the tests and the leaves record the examples (here persons)



4 METHODS 32

(a) Ensemble learner consisting of two regression trees.

(b) Quality score calculation for tree1 of the ensemble learner.

Figure 12: Demonstration of the gradient descent algorithm on an example. (T. Chen and
Guestrin, 2016)

that fulfill the same tests. The leaves are labeled with class scores. In order to make a
final prediction, e.g., for the young boy, the class scores of the corresponding leaves from
both trees are summed up. The positive class score indicates that the boy belongs to a
specific class.
The computation of the quality score for tree1 of the example ensemble learner is illus-
trated in Figure 12b. First, the first order and second order gradient statistics are summed
up on each leaf. Then, the scoring formula is applied to measure the quality of the tree
structure.

4.3.3 Shrinkage and Column Subsampling

Regression trees tend to overfit the training data quickly. In order to protect the gradient
boosted regression trees from overfitting, two additional strategies are used: shrinkage
and column subsampling.

One way to slow down the learning process of each individual tree is the shrinkage tech-
nique (Friedman, 2002), which applies a weighting factor 0 < η ≤ 1 to newly added
weights. This method helps to control the learning rate of the individual trees and to
leave some space for future added trees in order to improve the model.
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Figure 13: Model architecture of fastText for a sentence, which is represented asN ngram
features x1, ..., xN . The ngram features are embedded and averaged to form the hidden
variable. (Joulin et al., 2017)

The column subsampling method, also called feature subsampling, helps to reduce overfit-
ting by taking a subsample of the columns (corresponding to the features) for fitting each
individual tree. This method is also used for random forests (Breiman, 2001).

4.4 Excluded Methods

Aside from BERT and SVM, Romberg and Conrad (2021) also applied the methods fast-
Text and ECGA for the single-label classification of major positions and premises. How-
ever, these methods were excluded in this work due to shortcomings. In the following,
both methods are presented and their shortcomings discussed.

4.4.1 FastText

FastText (Joulin et al., 2017) is a linear classifier developed by Facebook AI. Given an ex-
ample sentence, the individual words are first represented as ngram features (cf. Section
5.1). Next, the word representations are averaged to form a representation of the whole
sentence, which is a hidden variable. Eventually, the sentence representation is fed to a
linear classifier. This procedure is demonstrated in Figure 13.

The goal of the classifier is to minimize the negative log-likelihood over the classes during
training: Let A and B be weight matrices and f a softmax function, which computes the
probability distribution over the classes. Given N example text inputs, let xn be the
normalized bag-of-ngrams of the nth examples and yn the label of the nth example. The
negative log-likelihood over the classes is defined as follows: (Joulin et al., 2017)

− 1

N

N∑
n=1

yn log(f(BAxn)) (15)

Romberg and Conrad (2021) used fastText for identifying major positions and premises
among argumentative sentences. However, fastText was clearly outperformed by SVM
and BERT with an average macro F1 score of 0.78 in the intra-dataset evaluation. In com-
parison, BERT and SVM achieved average macro F1 scores of 0.91 and 0.82. Moreover,
the model performed poorly for the minority class of each dataset and undersampling
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Figure 14: ECGA architecture with two learners. Each learner consists of three neural
components: a CNN, a bidirectional GRU and an attention component. The final pre-
diction is calculated by averaging the predictions from the individual learners. (Gian-
nakopoulos et al., 2019)

the majority class did not improve the results. Furthermore, fastText showed weaknesses
in generalizing on the datasets CQ_B and MC_K in the cross-dataset evaluation. Hence,
fastText will not be further considered in this work.

4.4.2 ECGA

ECGA (Giannakopoulos et al., 2019) stands for Ensemble of CNN-GRU-Attention and
is an ensemble classifier consisting of three neural components: convolutional neural
networks (Lecun et al., 1998), bidirectional gated recurrent neural units (Li et al., 2017)
and attention modules.

Convolutional neural networks (CNNs) are neural networks that were initially devel-
oped for image processing. The core component of CNNs is convolution. The convolution
operation can be interpreted as a filter. A kernel, which is a weight matrix, is slid across
the input matrix and produces a convoluted feature output by computing the dot prod-
uct between the input matrix values that are within the kernel’s bounds and the kernel.
CNNs work best, when there is some sort of structure in the input data such as repeated
patterns. (Patterson and Gibson, 2017)

Bidirectional gated recurrent neural units (BiGRUs) are sequence processing models that
consist of two gated recurrent neural units (Cho et al., 2014). A gated recurrent neural
unit (GRU) is a gating mechanism that is used in Recurrent Neural Networks (RNNs)
to help the model learn dependencies between distant words. One of the GRUs takes
the input sequence in a forward direction, while the other one takes it in a backwards
direction. (Sammani et al., 2021)

The architecture of an ECGA model is illustrated in Figure 14. First, an input matrix of
size n ×m, where n is the number of words and m the number of features, is fed into a
CNN with f filters of kernel size k, i.e., each filter slides over k words (a k-gram). The
output of the filters is then concatenated, creating an matrix of size (n−k+ 1)× f , where
the jth row is a feature of the jth k-gram. Next, the output of the CNN component is
given as an input to a BiGRU and subsequently to an attention module, which calculates
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a weighted sum of all output states of the BiGRU component. After applying attention,
the model puts the output through a softmax layer, attaining a final feature vector of the
input text. This procedure is repeated by multiple learners, e.g., with different kernel
sizes ki, in order to train with diverse features and improve the performance. The final
prediction of the ensemble model is calculated by averaging the predictions from the
individual learners. (Giannakopoulos et al., 2019)

ECGA profits from the usage of the three different neural components and reduces over-
fitting since it is an ensemble classifier and the final prediction is done by averaging the
results of the individual learners (Giannakopoulos et al., 2019). However, in Romberg
and Conrad (2021), ECGA was clearly outperformed by SVM and BERT for the single-
label classification task of identifying major positions and premises. The model achieved
an average macro F1 score of 0.77 in the intra-dataset evaluation, whereas BERT and SVM
reached an average macro F1 score of 0.91 and 0.82. Similar to fastText, the model also
showed weaknesses in generalizing on the datasets CQ_B and MC_K and recognizing
the minority class of the datasets. Hence, ECGA will not be further considered in this
work.
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5 Feature Extraction

Different machine learning algorithms require different input formats. A feature is a
numerical representation of information from data that can be passed to the classifiers.
There are different types of features and different ways, features can be extracted from
text data. For the selected methods BERT and DistilBERT, the required input format
described in Section 4.2.2 is obtained by applying the models’ tokenizers, which are all
available on the machine learning platform Hugging Face12. Hence, for these models
no further feature extraction step is required. Regarding the chosen classifiers SVM and
XGBoost, we consider bag-of-ngrams, the distribution of POS-tags and the distribution
of dependencies in the input texts as features in our experiments. In the following, the
considered features are described.

5.1 Bag-of-ngrams

Bag-of-ngrams featurization is a commonly used method for representing text data for ma-
chine learning algorithms. An ngram is a sequence of n tokens, e.g., a single word is a
1-gram, also called unigram, and a sequence of two words is a 2-gram, also referred to as
bigram. (Zheng and Casari, 2018)

For example, tokenizing the example sentence “Engstelle führt direkt auf Gleise” (engl.
“Narrow passage leads directly onto tracks”) from the cycling dialogue dataset CD_B
would generate the following unigrams:

[’Engstelle’, ’führt’, ’direkt’, ’auf’, ’Gleise’]

On the other hand, tokenizing the example sentence into bigrams would generate:

[’Engstelle führt’, ’führt direkt’, ’direkt auf’, ’auf Gleise’]

A bag-of-ngram is created by the following three steps: First, each document is tokenized
into ngrams. Second, a vocabulary is built based on the ngrams and third, each document
is converted into a vector of counts that contains an entry for every ngram in the vocab-
ulary. For example, if an ngram occurs t times in a document, then the feature vector has
a count of t in the position corresponding to that ngram. A bag-of-ngram representation
in the case of unigrams is also called bag-of-words.
The larger n is chosen, the more of the original sentence structure and semantic meaning
is maintained, since more context is given. Hence, the generated ngrams can be more
informative. However, the larger n becomes, the more unique ngrams will be generated
and the sparser the bag-of-ngrams feature will become. (Müller and Guido 2016; Zheng
and Casari 2018)

Rescaling with Tf-idf
Tf-idf stands for term frequency - inverse document frequency and is a commonly used

12https://huggingface.co/models

https://huggingface.co/models
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measure to normalize the frequencies of tokens for a bag-of-ngrams model. The goal of
rescaling the model with the tf-idf measure is to reduce the influence of terms that occur
in many documents, e.g., of pronouns and conjunctions, as these terms usually are less
discriminative than those that occur in fewer documents. Terms that appear often in a
particular document but only in few documents of the whole corpus are given a higher
weight, since they are more likely discriminative and descriptive of the document’s
content. (Müller and Guido, 2016)

Let N be the total number of documents in the corpus and df(t) the document frequency of
term t, i.e. the number of documents, in which t occurs. The inverse document frequency is a
measure for determining the informativeness of a term. The inverse document frequency
of term t, idf(t), is originally defined as follows: (Salton and Buckley, 1988)

idf(t) = log(
N

df(t)
) (16)

However, it is common to add 1 to the denominator in order to avoid zero division. The
implemented version of tf-idf in the Python library scikit-learn13 also adds 1 to idf(t) so
that terms with idf(t) = 0, i.e., terms that occur in all documents, will not be entirely
ignored. Moreover, the implemented version adds the constant 1 to both, the numerator
and denominator, pretending that an extra document was seen, in which every term of
the vocabulary occurs exactly once in order to smooth out the output:14

idf(t) = log(
1 +N

1 + df(t)
) + 1 (17)

For example, if a term t occurs in many documents, then idf(t) returns a value close to 1.
On the other hand, if t occurs rarely, then idf(t) increases.

Let tf(t, d) be the term frequency of term t in document d, i.e., the number of occurrences
of t in d. The tf-idf score of term t in document d is defined as the product of tf(t, d) and
idf(t):

tf-idf(t, d) = tf(t, d) · idf(t) (18)

A high value for tf-idf(t, d) is achieved when the frequency of token t in document d is
high, but the token occurs overall in very few documents from the given set of docu-
ments.

Lastly, the vector representations of the computed tf-idf scores are normalized by the
Euclidean norm, also called L2-norm, such that the vector representation of each document
has the Euclidean length 1. A vector v is normalized as follows:

vnorm =
v

||v||2
=

v√
v21 + v22 + ...+ v2n

(19)

Liebeck et al. (2016) used ngrams for the classification of argument component types
and state that ngrams are able to capture the text content well because certain words are

13https://scikit-learn.org/
14https://scikit-learn.org/stable/modules/feature_extraction.html#

tfidf-term-weighting

https://scikit-learn.org/
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
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Figure 15: Demonstration of the tf-idf rescaled bag-of-words featurization applied in this
work on the example corpus from Table 11. First, each document is tokenized into lower-
cased unigrams. Second, a vocabulary over all documents is built based on the unigrams.
Third, each document is converted into a vector of counts that contains an entry for ev-
ery unigram in the vocabulary. Lastly, the vector of counts are rescaled with tf-idf and
normalized by the Euclidean norm.

used repeatedly in sentences belonging to the same argument component type. For their
classification task, they tested unigrams and bigrams for the bag-of-ngrams features and
achieved the best results using lowercased unigrams. Romberg and Conrad (2021) used
unigrams as well, relying on the results by Liebeck et al. Thus, in this work lowercased
unigrams are chosen. Furthermore, in this work tf-idf rescaling was applied in order to
normalize the bag-of-words representation, i.e., each token was weighted according to
its tf-idf score. The rescaled bag-of-words representation was then used as a feature for
the SVM and XGBoost models.

Consider the following example corpus shown in Table 11 that consists of four documents
(here sentences):

id content
1 “Engstelle führt direkt auf Gleise”
2 “Radweg führt direkt in eine Gasse”
3 “Auf der Fahrbahn sind keine Markierungen”
4 “Risse auf der Kempener Allee”

Table 11: Example corpus consisting of four sentences.

Creating the bag-of-words representation for the example corpus and rescaling the rep-
resentaion with scikit-learn’s TfidfVectorizer15 is demonstrated in Figure 15. As earlier
mentioned, lower-cased unigrams were chosen for the bag-of-words representation. In

15https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.
TfidfVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
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the first example sentence, the unigrams “engstelle” and “gleise” have a higher tf-idf
score compared to the remaining unigrams since they occur only once in the whole cor-
pus.

In order to further improve the performance of the models and reduce the size of the
bag-of-words feature, unigrams that occurred very frequently or extremely infrequently
were eliminated from the built vocabulary. For that, unigrams with a document fre-
quency higher than 40% and unigrams with a document frequency lower than 0.1% were
removed after experimenting with different values.

5.2 Grammatical Distributions

Liebeck et al. (2016) observed that the user comments in their public participation data
contain different tenses and sentence structures for different argument component types.
In order to capture this information, Liebeck et al. (2016) and Romberg and Conrad (2021)
represented sentences as a L2-normalized POS-tag distribution and a L2-normalized dis-
tribution of dependencies and used these representations in addition to bag-of-words as
features for their classification models. Hence, in this work the L2-normalized POS-tag
distribution and the L2-normalized distribution of dependencies were considered as fea-
tures for the classifiers SVM and XGBoost as well. In the following, POS-tagging and
dependency parsing are explained in more detail.

POS-tagging
POS-tags are pre-defined part-of-speech categories and POS-tagging describes the pro-
cess of assigning POS-tags to each word of a text. The Stuttgart Tübingen Tagset (STTS)
by Schiller et al. (1999) consists of over 50 POS-tags and represents a quasi-standard for
the German language (Rehbein and Schalowski, 2013).

Consider the example sentence “Sollen Radler*innen hier wirklich warten müssen?”
(engl. “Shall cyclists really have to wait here?”) from the cycling dialogue dataset CD_B.
Applying the natural language processing library spaCy16 for POS-tagging returns the
following STTS POS-tags for the given example sentence (given in parentheses):

Sollen(VMFIN) Radler*innen(NN) hier(ADV) wirklich(ADJD)
warten(VVINF) müssen(VMINF) ?($.)

For instance, the POS-tag ADV stands for an adverb, NN for a noun and $. for a sentence-
final punctuation mark.

Dependency parsing
Dependency parsing is the process of analyzing the grammatical structure of a sentence
and finding relations between the words.

Given the example sentence from earlier, spaCy assigns the following dependency tags
using the TIGER treebank annotation scheme (Brants et al., 2002):

16https://spacy.io/

https://spacy.io/


5 FEATURE EXTRACTION 40

Sollen(ROOT) Radler*innen(sb) hier(mo) wirklich(mo) warten(oc)
müssen(oc) ?(punct)

For example, the dependency tag sb stands for subject, mo for modifier and oc for clausal
object.
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6 Experimental Setup

In this section, the experimental setup for evaluating the different models is described.
First, the used evaluation metrics for the multi-label classification task are defined. Next,
the data partitioning strategy k-fold cross-validation and the hyperparameter-tuning tech-
nique grid search are explained. Furthermore, a required data preprocessing step was
conducted before applying the proposed methods. Lastly, the considered features for
SVM and XGBoost and combinations of them are tested in experiments before selecting
the most suitable feature or feature combination for these methods.

6.1 Evaluation Metrics

In multi-label classification, the evaluation slightly differs from traditional single-label
classification since it has to be considered that multiple labels can be assigned to an ex-
ample and thus predictions can be partially correct. For the evaluation of the models, the
commonly used metrics accuracy, F1 score and hamming loss were considered.

In order to define the metrics, first the different types of predictions or errors in a multi-
label classification task have to be explained: A false positive is a sample, for which the
classifier predicted a label that is incorrect, whereas a false negative is a sample, for which
a true label was missed by the classifier. Moreover, a sample is referred to as a true
positive if the classifier correctly assigned a label. On the other hand, a sample is called
true negative if the classifier correctly predicted the non-existence of a label. The number
of false positives, false negatives, true positives and true negatives of the predictions will
be denoted as FP , FN , TP and TN respectively. (Lentzas et al., 2022)
In the following, the metrics are defined based on Lentzas et al. (2022) and Müller and
Guido (2016) and discussed.

6.1.1 Accuracy

Accuracy is defined as the fraction of correctly predicted samples. In multi-label classifi-
cation, a prediction is considered correct, if the entire set of predicted labels matches with
the set of true labels. The accuracy score is computed as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(20)

The metric takes values between 0 and 1, with 1 being the optimal value. Accuracy is
the most intuitive metric, however, this score does not provide information about how
well each individual class is predicted by the classifier. Particularly in the case of highly
imbalanced datasets, which is the case for the used datasets in this work, a high accuracy
does not necessarily mean that the classifier recognizes each class equally well. Moreover,
in the case of a multi-label classification task, the accuracy metric does not give credit
to partially correct predictions, i.e., when a part of the labels were assigned correctly.
Therefore, this score will not be used for evaluating the models.
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6.1.2 F1 Score

In order to introduce the F1 score, first the metrics precision and recall have to be defined.
Precision is the proportion of correct predictions among all predictions of a certain class,
i.e., it measures how many of the assigned instances to a class actually belong to it:

precision =
TP

TP + FP
(21)

Recall measures the proportion of examples of a certain class that have been recognized
correctly by the classifier as being part of the class:

recall =
TP

TP + FN
(22)

The F1 score is defined as the harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision + recall

(23)

Since the F1 score takes both precision and recall into consideration, it is often chosen as
an overall measure for evaluating a classifier. Precision, recall and F1 score take values
between 0 and 1, with 1 being the optimal value. The average F1 score over all classes is
called macro F1. However, a disadvantage of the F1 score in case of a multi-label classifi-
cation task is that it does not give credit to partially correct predictions, either. Therefore,
in addition to the F1 score, another metric should be used for evaluating the models,
which takes partially correct predictions into account.

6.1.3 Hamming Loss

Hamming loss is the average hamming distance between two samples and takes partially
correct or incorrect predictions into account by calculating the fraction of labels that are
predicted incorrectly to the total number of labels. The hamming distance between two
sets equals the symmetric difference between them.

Let N be the total number of samples and L the number of labels. Let yi,j be the target,
i.e., if the jth label belongs to the ith sample, then yi,j = 1, otherwise, yi,j = 0. Let zi,j be
the classifier’s prediction, whether the jth label belongs to the ith sample. The hamming
loss is computed as follows:

Hamming =
1

N · L

N∑
i=1

L∑
j=1

⊕(yi,j , zi,j) (24)

⊕ is the xor operator, i.e., if yi,j = zi,j holds, then ⊕(yi,j , zi,j) = 0, otherwise, ⊕(yi,j , zi,j) =
1. Hamming loss also takes values between 0 and 1. In contrast to the other metrics, 0 is
the optimal value since hamming loss is a loss function.

Since hamming loss takes partially correct predictions into account, it is an important
metric for evaluating multi-label classification tasks. Hence, hamming loss was used
together with the F1 metric in order to evaluate our multi-label classification models.
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Figure 16: Train and test splits of a 5-fold cross-validation. (Müller and Guido, 2016)

6.2 k-fold Cross-Validation

Splitting data into only one train and test set can lead to overfitting and produce un-
reliable results, particularly in the case of a limited amount of data. Cross-validation is
a commonly used data partitioning strategy that helps to evaluate a model in a more
generalizable way by resampling the dataset several times using different subsets of the
dataset for training and testing.

In a k-fold cross-validation, the dataset is partitioned into k subsets of approximately the
same size, which are called folds. The first model uses the first fold as a test set and the
remaining k−1 folds for training. The second model uses the second fold as a test set and
the remaining folds for training. This procedure is repeated k times until each of the k
folds is used for testing once. In total, k models are trained and evaluated. The results of
each evaluated model can then be averaged in order to obtain more generalizable results.
(Müller and Guido, 2016)

Usually, for k the values 5 or 10 is chosen. Romberg and Conrad (2021) applied a 5-fold
cross-validation for evaluating the methods on each dataset. Hence, in this work 5 was
chosen for k as well. The data-splitting process of a a 5-fold cross-validation is illustrated
in Figure 16.

6.3 Grid Search

Hyperparameters are the parameters of a model that are specified by the user and not
learned in the learning process. The values of the hyperparameters have an influence on
the performance of the models, hence it is important to adjust them. The goal is to find
the configuration of the hyperparameters that produces the best results.

Grid search is a commonly used method for hyperparameter-tuning, in which the selected
hyperparameters are set with different values and each possible combination is evalu-
ated. In this work, grid search was applied on each train set in order to obtain a model
with optimized hyperparameters. In order to evaluate the different hyperparameter con-
figurations, the actual train set was split once again in train and validation sets. For the
SVM and XGBoost models, a 3-fold cross-validation was applied for splitting the train
set. For the BERT and DistilBERT models, the train set was split only once in a train
and validation set (80:20) due to high computational costs and limited resources. After
obtaining the model with the best hyperparameter configuration from grid search, the
model is then applied and evaluated on the actual test set.
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CD_B CD_C CD_M CQ_B MC_K all
total 9, 289 1, 507 1, 811 1, 333 1, 577 15, 517

mpos 2, 589 (27.9%) 556 (36.9%) 359 (19.8%) 960 (72.0%) 892 (56.6%) 5, 356

premise 6, 438 (69.3%) 904 (60.0%) 1, 407 (77.3%) 250 (18.8%) 616 (39.1%) 9, 615

mpos+premise 262 (2.8%) 47 (3.1%) 45 (2.5%) 123 (9.2%) 69 (4.4%) 546

Table 12: Distribution of sentences among the different argument component categories
per dataset after removing non-argumentative sentences.

Romberg and Conrad (2021) applied grid search as well. For the kernelized SVMs with
a Gaussian kernel, they tuned the regularization parameter C and the kernel coefficient
γ, choosing values from C ∈ {1, 10, 100} and γ ∈ {0.001, 0.01, 0.1}. For the BERT models,
they tuned the batch size, the number of epochs and the learning rate. The batch size is
the number of samples that are processed before the model weights are updated and the
number of epochs is the number of complete passes through the entire train dataset. The
learning rate controls how strong the model reacts and adjusts its weights in response to
prediction errors. Devlin et al. (2019) suggest the batch sizes 16 or 32, maximum 4 epochs
and the learning rates 2e-5, 3e-5 or 5e-5 for BERT. These values were also considered by
Romberg and Conrad.

In this work, we optimized the mentioned hyperparameters for the SVM and BERT mod-
els relying on the same hyperparameter values chosen by Romberg and Conrad. For
the DistilBERT models, we also rely on the same hyperparameter values as for the BERT
models since the developers Sanh et al. (2019) did not suggest any specific values. For
XGBoost, the number of regression trees, the learning rate and the maximum depth of the
trees was optimized. Choosing too large values for the number of trees and the maximum
depth increases the computational costs and may lead to overfitting, while choosing too
low values may lead to underfitting. The developers T. Chen and Guestrin (2016) did not
recommend any specific hyperparameter values for XGBoost. After experimenting with
different hyperparameter values, the number of trees 200 and 300, the learning rates 0.1
and 0.2 and the maximum depths 8 and 10 were selected for grid search.

6.4 Dataset

Since for the classification of major positions and premises only argumentative sentences
are considered, non-argumentative sentence were filtered out. Table 12 shows the distri-
bution of the sentences among the argument component categories for each dataset after
filtering out non-argumentative sentences. The dataset CD_B is significantly larger than
the remaining datasets with a total number of 9,289 sentences. In contrast, the remaining
datasets comprise between 1,333 and 1,811 sentences.

As already mentioned in Section 2.2, the frequencies of the different argument compo-
nent classes are noticeably imbalanced in each dataset, which may affect the ability of
the applied classification algorithms to recognize the minority class negatively. In the
datasets CD_B, CD_C and CD_M, premise forms the majority class, whereas in CQ_B
and MC_K the class major position (mpos) occurs most frequently. Furthermore, the
multi-label mpos+premise is highly under-represented in contrast to the single labels.
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features SVM XGBoost
h-loss macro F1 h-loss macro F1

BOW 0.12 0.85 0.12 0.86
BOW + POS 0.11 0.86 0.12 0.86
BOW + DEP 0.12 0.86 0.12 0.86
BOW + POS + DEP 0.11 0.86 0.12 0.86

(a) Results for label power-set.

features SVM XGBoost
h-loss macro F1 h-loss macro F1

BOW 0.12 0.86 0.12 0.86
BOW + POS 0.12 0.86 0.12 0.86
BOW + DEP 0.12 0.86 0.12 0.86
BOW + POS + DEP 0.12 0.86 0.12 0.86

(b) Results for binary relevance.

features SVM XGBoost
h-loss macro F1 h-loss macro F1

BOW 0.12 0.86 0.12 0.86
BOW + POS 0.12 0.86 0.12 0.86
BOW + DEP 0.12 0.86 0.12 0.86
BOW + POS + DEP 0.12 0.86 0.12 0.86

(c) Results for classifier chains.

Table 13: Comparison of different feature combinations for SVM and XGBoost using dif-
ferent problem transformation methods. The models were trained on the largest dataset
CD_B for the multi-label classification of major positions and premises among argumen-
tative sentences. Considered features were the tf-idf rescaled bag-of-words (BOW), L2-
normalized POS-tag distribution (POS) and L2-normalized distribution of dependencies
(DEP). The scores are averaged for the 5-fold cross-validation.

6.5 Feature Selection

For the classifiers SVM and XGBoost, the tf-idf rescaled bag-of-words representation, the
L2-normalized POS-tag distribution and the L2-normalized distribution of dependencies
were considered as features (cf. Section 5). Romberg and Conrad (2021) used the com-
bination of all three feature types for their SVM models, relying on the suggestion by
Liebeck et al. (2016).

Before deciding on the features for SVM and XGBoost, it was decided to experiment
with the different features and combinations of them on the largest dataset CD_B. Table
13 presents the results of the experiment for the SVM and XGBoost models using the
proposed algorithm adaption methods label power-set, binary relevance and classifier
chains. The evaluation metric hamming loss is abbreviated to h-loss in the tables.

Overall, it was observed that using the grammatical distributions as additional features
in combination with the bag-of-words representation did not noticeably improve the re-
sults. In fact, The different feature combinations achieved mostly identical scores. The
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features SVM XGBoost
h-loss macro F1 h-loss macro F1

BOW with stopwords 0.12 0.85 0.12 0.86
BOW without stopwords 0.18 0.76 0.18 0.76

(a) Results for label power-set.

features SVM XGBoost
h-loss macro F1 h-loss macro F1

BOW with stopwords 0.12 0.86 0.12 0.86
BOW without stopwords 0.18 0.76 0.18 0.76

(b) Results for binary relevance.

features SVM XGBoost
h-loss macro F1 h-loss macro F1

BOW with stopwords 0.12 0.86 0.12 0.86
BOW without stopwords 0.18 0.76 0.18 0.76

(c) Results for classifier chains.

Table 14: Comparison between removing stopwords and keeping stopwords prior to
extracting the tf-idf rescaled bag-of-words representation (BOW) for the dataset CD_B.
The scores are averaged for the 5-fold cross-validation.

only difference was noticed for SVM using label power-set, in which the feature combi-
nations achieved slightly better scores that differed at most by only 0.01 points. Hence,
it was concluded that the grammatical distributions do not benefit the classification of
major positions and premises. Thus, the grammatical distributions will not be included
in the feature set for the SVM and XGBoost models. In the further course of the work, the
results of SVM and XGBoost always refer to the models using solely the tf-idf rescaled
bag-of-words representation as an input.

Furthermore, for the SVM and XGBoost models an additional preprocessing step was
considered. The elimination of stopwords is a commonly performed technique to reduce
the feature size of text data. Stopwords are words that are commonly used in a language
and may not include relevant information, e.g., articles and connecting words. Especially
the bag-of-words representation can become sparse if the generated vocabulary is very
large. Hence, by removing stopwords the feature size and computational costs can be re-
duced. Moreover, removing stopwords can potentially help to improve the performance
of the models since they can focus on more meaningful words. (Müller and Guido, 2016)

In an experiment on the largest dataset CD_B, stopwords were filtered out before extract-
ing the tf-idf rescaled bag-of-words representation. For the removal of stopwords, the
natural language processing library spaCy17 was used. The results of the experiment are
shown in Table 14. It was observed that all models achieved significantly better results
without the elimination of stopwords. The removal of stopwords seemed to eliminate
certain words that are relevant for the classification of the different argument component
types. Hence, this prepocessing step was discarded.

17https://spacy.io/

https://spacy.io/
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Regarding BERT and DistilBERT, no further feature selection and preprocessing step was
considered. As mentioned in Section 5, for the BERT and DistilBERT models the required
input format is obtained by applying the models’ tokenizers. Moreover, for BERT and
BERT-based models it is not common to conduct a preprocessing step since these pre-
trained language models make use of all of the information in a sentence.
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7 Results

In this section, the proposed methods SVM, XGBoost, BERT and DistilBERT for the multi-
label classification task of identifying major positions and premises among argumenta-
tive sentences from German public participation user content are evaluated. First, the
models are evaluated on each dataset separately in an intra-dataset evaluation in order
to assess how good they are at classifying multi-label argument components in an “op-
timal” setting. Next, it is investigated whether the findings generalize well in a cross-
dataset evaluation.

For reference, the SVM and XGBoost models were run on a regular CPU (Intel(R)
Core(TM) i7-8565U CPU @ 1.80GHz). Due to a long execution time and large memory us-
age, the BERT and DistilBERT models were run on a GPU (Tesla P100-PCIE-16GB) using
the cloud-based Jupyter notebook environment Google Colaboratory18.

7.1 Intra-Dataset Evaluation

In the following, the results of the intra-dataset evaluation are presented and discussed,
i.e., the models are trained and tested on each dataset separately. First, the results of
SVM and XGBoost using different problem transformation methods (label power-set, bi-
nary relevance and classifier chains) are compared. Next, the results of BERT and Dis-
tilBERT are presented and discussed. The results are then compared to the single-label
classification results by Romberg and Conrad (2021). Lastly, it is examined whether un-
dersampling the majority class helps to produce more constant results for both argument
component classes.

7.1.1 Results of SVM and XGBoost

In order to perform multi-label classification with the single-label classifiers SVM and
XGBoost, applying a problem transformation method is required. In Section 3.2, label
power-set, binary relevance and classifier chains were proposed. The intra-dataset results
of SVM and XGBoost using these problem transformation methods are presented in Table
15. In the following course of the work, the classes major position and premise will be
abbreviated to mpos and prem in the tables. The evaluation metric hamming loss will be
abbreviated to h-loss.

The SVM models achieved macro F1 scores between 0.77 and 0.85 and hamming losses
between 0.11 and 0.20 across the datasets. Comparing the different problem transforma-
tion methods, all lead to nearly identical macro F1 scores and hamming, except for the
dataset CQ_B. In this particular dataset, binary relevance performed noticeably better
with an macro F1 score of 0.81 and a hamming loss of 0.14. In contrast, label power-set
and classifier chains attained the macro F1 scores 0.78 and 0.77 and both a hamming loss
of 0.16.

In contrast to SVM, the XGBoost models achieved in general lower and less constant
scores across the datasets. The macro F1 scores of XGBoost lie between 0.72 and 0.84

18https://colab.research.google.com/

https://colab.research.google.com/


7 RESULTS 49

dataset PTM h-loss
F1 scores

mpos prem macro

CD_B
LP 0.12 0.79 0.92 0.85
BR 0.12 0.77 0.92 0.85
CC 0.12 0.79 0.92 0.85

CD_C
LP 0.17 0.77 0.86 0.82
BR 0.17 0.78 0.86 0.82
CC 0.17 0.78 0.87 0.82

CD_M
LP 0.11 0.71 0.93 0.82
BR 0.11 0.73 0.93 0.83
CC 0.11 0.73 0.93 0.83

CQ_B
LP 0.16 0.91 0.65 0.78
BR 0.14 0.92 0.69 0.81
CC 0.16 0.91 0.63 0.77

MC_K
LP 0.20 0.84 0.75 0.80
BR 0.20 0.85 0.76 0.80
CC 0.20 0.85 0.75 0.80

(a) Results for SVM.

dataset PTM h-loss
F1 scores

mpos prem macro

CD_B
LP 0.12 0.77 0.92 0.84
BR 0.13 0.77 0.91 0.84
CC 0.13 0.77 0.92 0.84

CD_C
LP 0.21 0.72 0.84 0.78
BR 0.20 0.73 0.84 0.79
CC 0.20 0.73 0.84 0.79

CD_M
LP 0.14 0.61 0.91 0.76
BR 0.15 0.61 0.91 0.76
CC 0.14 0.61 0.91 0.76

CQ_B
LP 0.18 0.90 0.62 0.76
BR 0.18 0.90 0.63 0.76
CC 0.19 0.90 0.55 0.72

MC_K
LP 0.24 0.81 0.71 0.76
BR 0.24 0.81 0.70 0.76
CC 0.25 0.80 0.70 0.75

(b) Results for XGBoost.

Table 15: Intra-dataset evaluation. Comparison of SVM and XGBoost using the different
problem transformation methods (PTMs) label power-set (LP), binary relevance (BR) and
classifier chains (CC) for the multi-label classification of major positions and premises
among argumentative sentences. Scores are averaged for the 5-fold cross-validation.

and the hamming losses between 0.12 and 0.25. For this classifier, the different problem
transformation methods performed similarly as well. Mostly, the scores differ by only
0.01 points in each dataset. However, as for SVM, the results of the different approaches
show a more noticeable difference for CQ_B. In this dataset, binary relevance and label
power-set achieved an macro F1 score that is 0.04 points better than the one achieved by
classifier chains. Nevertheless, the hamming losses for CQ_B only differ by at most 0.01
points, i.e., considering partially correct predictions, the three problem transformation
methods still performed similarly for CQ_B.

Overall, the performances of the different problem transformation methods show very
minimal differences for both classifiers, which is contrary to the expected outcome. As
mentioned in Section 3.2, binary relevance assumes that the labels are mutually exclu-
sive and ignores any underlying relations between them, whereas classifier chains takes
potential correlation between the classes into consideration. Also, in Table 10 (cf. Sec-
tion 3.2), Cramér’s V was calculated for the classes major position and premise in order
to asses any underlying association between the classes. Cramér’s V lied between 0.50
and 0.72 for the datasets, indicating a strong relation between the argument component
types. Especially for the datasets CD_B and CD_M, high Cramér’s V values were calcu-
lated. However, no noticeable disadvantage was observed for binary relevance over the
other two methods in any dataset. In fact, binary relevance achieved clearly better results
compared to classifier chains for one of the datasets. Hence, the existent relation between
the two argument component types seems to not restrict the performance of binary rele-
vance in this case. This observation also underlines the statement by Luaces et al. (2012)
that binary relevance can still lead to good results when a correct implementation of the
method is used and an appropriate base learner is selected.
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Another finding contrary to the expected outcome is that label power-set achieved com-
parable results to the other two problem transformation methods. In Section 3.2, it was
mentioned that having less examples for label combinations, which is the case for the
multi-label mpos+premise, may affect the performance of label power-set negatively since
this approach considers each label combination as a separate class. However, in our
classification task, label power-set achieved comparable results to the other two prob-
lem transformation methods. This may be due to the reason that only three classes are
considered (mpos, premise and mpos+premise), hence the number of classes is still low.

On closer inspection of the results across the different datasets, all models achieved the
highest macro F1 scores and lowest hamming losses for the dataset CD_B. Also, only for
CD_B, XGBoost produced comparable results to SVM. Since CD_B is significantly larger
than the remaining datasets, the models are trained on much more training examples
compared to the remaining datasets, thus it was expected that the models achieve better
results for this particular dataset. On average, the lowest macro F1 scores and highest
hamming losses were attained for CQ_B and MC_K by both classifiers. The lower results
for MC_K may be due to the fact that the dataset originates from a public participa-
tion process that concerns the more general topic mobility in contrast to the remaining
datasets that focus on cycling. Hence, the user comments of MC_K may show more dif-
ferences in their argument structure. Since the dataset CQ_B originates from a postal
survey, the contained arguments also may have a different structure compared to the
arguments in the cycling dialogue datasets.

Examining the results for the different argument component classes, SVM and XGBoost
attained better F1 scores for the majority class of each dataset. This was expected since
the provided datasets are highly imbalanced. In CD_B, CD_C and CD_M, premise is the
majority class, for which better F1 scores were achieved than for the class major position,
whereas in CQ_B and MC_K, major position forms the majority class and was recognized
better.
The largest differences between the results of the classes were observed for the datasets
CD_M and CQ_B. For CD_M, the SVM models showed on average a difference of 0.21
points between the F1 scores of both classes and the XGBoost models on average a differ-
ence of 0.30. This was expected, as the datasets CD_M and CQ_B are more imbalanced
in contrast to the remaining datasets.
It was also expected that the results for the different classes differ the least for MC_K since
this particular dataset is less imbalanced compared to the remaining datasets. However,
this was not the case. Instead, the least difference between the results of the classes was
observed for CD_C, the second least imbalanced dataset after MC_K. Again, this may be
due to the fact that the user comments in MC_K concern a more general topic, which may
affect the ability of the classifiers to recognize certain argument component types.

7.1.2 Results of BERT and DistilBERT

Next, the results of the intra-dataset evaluation for the applied BERT models and Distil-
BERT are presented. The results are shown in Table 16. As already mentioned, for BERT
and BERT-based models the use of a problem transformation method is not required. In
order to do multi-label classification, simply the output layer of the models have to be
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dataset BERT model h-loss F1 scores
mpos prem macro

CD_B
GermanBERT 0.07 0.89 0.95 0.92

GBERT 0.06 0.91 0.95 0.93
DistilBERT 0.07 0.90 0.95 0.92

CD_C
GermanBERT 0.09 0.90 0.93 0.91

GBERT 0.08 0.90 0.93 0.91
DistilBERT 0.10 0.88 0.92 0.90

CD_M
GermanBERT 0.06 0.87 0.95 0.91

GBERT 0.05 0.89 0.96 0.93
DistilBERT 0.06 0.86 0.96 0.91

CQ_B
GermanBERT 0.08 0.96 0.84 0.90

GBERT 0.06 0.97 0.88 0.92
DistilBERT 0.07 0.97 0.85 0.91

MC_K
GermanBERT 0.13 0.90 0.84 0.87

GBERT 0.11 0.92 0.86 0.90
DistilBERT 0.12 0.92 0.86 0.89

Table 16: Intra-dataset evaluation. Comparison of GermanBERT, GBERT and German
DistilBERT for the multi-label classification of major positions and premises among ar-
gumentative sentences. Scores are averaged for the applied 5-fold cross-validation.

adjusted (cf. Section 4.2.4).

Overall, GermanBERT, GBERT and DistilBERT achieved remarkably good results that lie
very close to another and outperformed SVM and XGBoost by far. In most cases, GBERT
achieved slightly better scores than GermanBERT and DistilBERT. For GBERT, the aver-
age macro F1 score and hamming loss for the datasets lies at 0.92 and 0.07. Meanwhile,
the average macro F1 scores of DistilBERT and GermanBERT lie both at 0.91 and their
hamming losses at 0.08 and 0.09. It was expected that GBERT performs better than Ger-
manBERT since it is the successor model of GermanBERT. However, it was not expected
that the significantly smaller DistilBERT model performs equally well as GermanBERT.
This shows that a bigger model size does not necessarily lead to a better performance and
that DistilBERT can compete with the BERT models.

Comparing the results across the datasets shows that all models achieved the best results
for CD_B and the worst results for MC_K. As earlier mentioned in the intra-dataset eval-
uation of SVM and XGBoost, CD_B is significantly larger than the remaining datasets,
hence the models are trained on much more training examples. Thus, it was expected
that the models achieve better results for this particular dataset. As for SVM and XG-
Boost, the lower performance for MC_K may indicate that the user comments of this
particular dataset show more differences in their argument structure since the dataset
originates from a public participation process that concerns a more general topic.
Moreover, compared to the other two models, GBERT produced the most constant re-
sults for the different datasets. GBERT’s macro F1 scores differ at most by 0.03 points and
the hamming losses by 0.06. GermanBERT shows the largest difference with macro F1

scores that differ at most by 0.05 points and hamming losses that differ at most by 0.07.
However, the results are still remarkably constant.
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model CD_B CD_C CD_M CQ_B MC_K
GermanBERT 1h 3min 11min 13min 10min 11min

GBERT 1h 4min 11min 13min 10min 11min
DistilBERT 35min 6min 7min 5min 6min

Table 17: Comparison of the run times for the intra-dataset evaluation of the applied
BERT and DistilBERT models. The run times include the 5-fold cross-validation and grid
search.

As already mentioned in the evaluation of the SVM and XGBoost models, it is expected
that the models attain better F1 scores for the majority class of each dataset since the
datasets are highly imbalanced and for those classes clearly more training examples are
provided. Thus, BERT and DistilBERT recognize the class premise better in the datasets
CD_B, CD_C and CD_M, whereas in CQ_B and MC_K major positions are recognized
better.
Also, the largest difference between the results for both classes was again observed for
the datasets CD_M and CQ_B. For CD_M, the three models showed on average a dif-
ference of 0.08 points for the F1 scores of both classes and for CQ_B a difference of 0.11,
which may be due to the reason that CD_M and CQ_B are more imbalanced than the
other datasets. On the other hand, it was also expected that the results for the different
classes differ the least for MC_K since it is less imbalanced than the remaining datasets.
However, as for SVM and XGBoost, this was not the case for BERT and DistilBERT, either.
Instead, the least difference was shown for CD_C, the second least imbalanced dataset af-
ter MC_K. This outcome may be again due to the fact that MC_K concerns a more general
topic, which may affect the ability of the models to recognize certain argument compo-
nent types negatively.

Moreover, in world applications efficiency also plays an important role besides perfor-
mance since the objective is to provide tools that are widely applicable, e.g., on different
types of devices. The results have shown that the BERT models and DistilBERT achieved
comparable good results. Therefore, the run times of the different models were investi-
gated next in order to determine which model may be more suitable in practice. In Table
17, the run times of the models on the GPU are listed, which include the grid search and
5-fold cross-validation. As expected, the models for the largest dataset CD_B required
a significantly longer run time compared to the models for the other, smaller datasets,
for which similar run times were shown. However, in comparison with the bigger sized
models, running DistilBERT took only about half as much time for all datasets. Since
DistilBERT achieved competitive results to the BERT models while having a model size
that is about 40% smaller and being about twice as fast, it may be more advantageous to
use DistilBERT in world applications, especially if limited computational resources are
given.

7.1.3 Comparison to Romberg and Conrad (2021)

Overall, the multi-label classification and single-label classification of major positions and
premises lead to comparable results. The results achieved by Romberg and Conrad (2021)
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for the single-label classification task were presented in Table 4 (cf. Section 2.3). Romberg
and Conrad applied GermanBERT and SVM as well. Their GermanBERT model achieved
an average macro F1 score of 0.91 for the datasets, which is equal to the average macro F1

score of our GermanBERT and DistilBERT models. However, our GBERT model attained
a slightly better average macro F1 score of 0.92 and more constant results with macro
F1 scores that differed at most by 0.03 points. In contrast, the macro F1 scores of the
applied GermanBERT model by Romberg and Conrad showed a difference of at most
0.06 points. For reference, GermanBERT’s macro F1 scores differed at most by 0.05 in
this work for the multi-label classification task. Regarding SVM, Romberg and Conrad
achieved an average macro F1 score of 0.82, which is also the case for our SVM model
using the problem transformation method binary relevance.
Another similarity seen between the results of both works is that the models behave
similarly for the different datasets, achieving the best results for the largest dataset CD_B
and the lowest results for the datasets CQ_B and MC_K. Also, the models of both works
tend to recognize the majority class of each dataset better.

7.1.4 Undersampling

For world applications it may be beneficial to provide models that perform approxi-
mately equally well for the different argument component classes since the number of
major positions and premises can vary in each dataset. Given the provided imbalanced
datasets, all models, especially the SVM and XGBoost models, performed much better
for the majority class of the datasets. Undersampling the majority class, which was also
carried out by Romberg and Conrad (2021) for their ECGA and fastText models, may
help to produce more constant results.

The majority class of each dataset was undersampled to be equal to the number of ex-
amples of the minority class by picking random samples. For instance, in CD_B, the
majority class premise comprised 6,438 examples and was undersampled to 2,589 ex-
amples, which is the number of examples for the minority class major position. Table
18 presents the results of the best BERT model (GBERT), DistilBERT, SVM and XGBoost
for the undersampling versions of the datasets (marked with an asterisk). For SVM and
XGBoost, the problem transformation method binary relevance was used.

Applying undersampling produced remarkably more stable results for the different ar-
gument component classes. For GBERT, the F1 scores between the two classes differ at
most by 0.03 points, for SVM at most by 0.02 points and for XGBoost and DistilBERT at
most by 0.04 points. Moreover, the overall performances of the models are very similar to
the performances of the models without undersampling (cf. Table 15 and 16). GBERT’s
macro F1 scores differ at most by 0.02 points and the hamming losses by 0.04 for both
versions. For DistilBERT, the scores differ even less. For DistilBERT, SVM and XGBoost,
some macro F1 scores even improved for some of the datasets.

A noticeable difference was seen for the dataset CQ_B, for which SVM achieved an im-
proved macro F1 score by 0.03 points and XGBoost an improved macro F1 score by 0.04
points using undersampling. However, the hamming losses of both classifiers worsened
by 0.06 points. Overall, a slight deterioration of the hamming losses was also observed
for the remaining datasets and classifiers, which means that more partially incorrect pre-
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dataset classifier h-loss F1 scores
mpos prem macro

CD_B*

GBERT 0.08 0.93 0.92 0.92
DistilBERT 0.08 0.93 0.92 0.93

SVM 0.15 0.86 0.86 0.86
XGBoost 0.15 0.86 0.86 0.86

CD_C*

GBERT 0.10 0.91 0.91 0.91
DistilBERT 0.09 0.92 0.90 0.91

SVM 0.19 0.81 0.83 0.82
XGBoost 0.23 0.79 0.78 0.79

CD_M*

GBERT 0.09 0.93 0.91 0.92
DistilBERT 0.09 0.94 0.90 0.91

SVM 0.19 0.82 0.81 0.82
XGBoost 0.28 0.74 0.74 0.74

CQ_B*

GBERT 0.09 0.94 0.91 0.93
DistilBERT 0.09 0.94 0.91 0.92

SVM 0.20 0.84 0.84 0.84
XGBoost 0.24 0.82 0.78 0.80

MC_K*

GBERT 0.13 0.90 0.88 0.88
DistilBERT 0.12 0.90 0.89 0.89

SVM 0.21 0.82 0.81 0.81
XGBoost 0.25 0.78 0.77 0.78

Table 18: Intra-dataset evaluation after undersampling the majority class of each dataset.
Scores are averaged for the 5-fold cross-validation.

dictions occurred for the undersampling versions. An underlying reason may be that the
number of training examples were significantly reduced after undersampling the ma-
jority classes. Especially, the most imbalanced dataset CQ_B was extremely reduced in
size from 1,333 samples to 500 samples. If more training examples were available for the
minority classes, the models’ performances may have improved.

7.2 Cross-Dataset Evaluation

So far, the models have been trained and tested on each dataset separately. However, for
world applications it is advantageous to provide a tool that also works well on unseen
data from different sources, e.g., from different public participation processes. Therefore,
the performances of GBERT, DistilBERT, SVM and XGBoost are investigated in terms of
generalizability. For that, the models are trained on one or more datasets and evaluated
on the remaining, unseen datasets.

First, the results of the cross-dataset evaluation are presented and discussed. Then a
comparison is drawn to the results of the intra-dataset evaluation, and lastly, the results
are compared to the cross-dataset evaluation of Romberg and Conrad (2021).
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7.2.1 Results of the Cross-Dataset Evaluation

Table 19 shows the results of the cross-dataset evaluation for the best BERT model
(GBERT), DistilBERT, SVM and XGBoost. The classifiers SVM and XGBoost were applied
in combination with binary relevance. First, all models were trained on CD_B, which
was selected intentionally since it is the largest dataset among all and thus the best scores
were achieved using this dataset. Moreover, Romberg and Conrad (2021) used CD_B for
training as well in their cross-dataset evaluation. Next, in addition to CD_B one of the re-
maining datasets were used for training as well to examine whether the results improve
adding additional datasets. When training on CD_B in combination for other datasets,
it was sampled down to 2,000 randomly selected sentences in order to approximately
match the size of the remaining datasets. Otherwise, the model would learn more from
the largest dataset CD_B and the remaining, smaller datasets would have less impact.

The results have shown that the BERT and BERT-based models generalized very well.
When using only CD_B for training, GBERT attained macro F1 scores between 0.88 and
0.92 and hamming losses between 0.06 and 0.12. Similar scores were achieved by Distil-
BERT with macro F1 scores that lie between 0.87 and 0.92 and hamming losses between
0.06 and 0.14. Moreover, the best scores were achieved for the dataset CD_M, which leads
to the assumption that CD_M resembles the dataset CD_B the most. However, adding
additional datasets for training did not improve the results on any dataset. In fact, in
some cases the scores worsened, especially when adding CQ_B for training. This indi-
cates that CQ_B differs most from the remaining datasets, which may be due to the fact
that it originates from a postal survey in contrast to the other datasets.

Furthermore, SVM and XGBoost showed strong weaknesses in generalizing on the
datasets CQ_B and MC_K and produced highly unstable results. Using solely CD_B for
training, SVM reached macro F1 scores between 0.69 and 0.85 and hamming losses be-
tween 0.10 and 0.31. XGBoost showed an even higher variance in the performance across
the different datasets with macro F1 scores between 0.61 and 0.84 and hamming losses be-
tween 0.10 and 0.41. As for GBERT and DistilBERT, the best scores were achieved for the
dataset CD_M. However, in contrast GBERT and DistilBERT, adding the dataset MC_K
for training improved the results for CQ_B. Especially XGBoost performed noticeably
better with an improved macro F1 score by 0.12 points and an improved hamming loss
by 0.15 points for CQ_B when using additionally MC_K for training.

7.2.2 Comparison to Intra-Dataset Evaluation

Comparing the results of the cross-dataset evaluation using CD_B for training with the
results of the intra-dataset evaluation (cf. Table 15 and 16), it is noticed that GBERT
and DistilBERT produced results that lie very close to the dataset-internal results. In
case of GBERT, the macro F1 scores and hamming losses in both evaluations differ at
most by 0.03 points, whereas for DistilBERT both scores differ at most by 0.04 points.
This indicates that BERT and DistilBERT are capable of producing highly generalizable
results.

On the other hand, the SVM and XGBoost models performed noticeably worse for the
datasets CQ_B and MC_K in the cross-dataset evaluation, while the results for CD_C of
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both evaluations lie very close to another. However, in the cross-dataset evaluation, the
results for CD_M using CD_B for training improved surprisingly. Again, this indicates
that the user comments in both datasets are structurally very similar. The improvement
may be due to the larger size of CD_B since more training examples are given.

7.2.3 Comparison to Romberg and Conrad (2021)

Romberg and Conrad (2021) evaluated BERT and SVM for the single-label classification
of major positions and premises in a cross-dataset evaluation as well. The results of their
cross-dataset evaluation were presented in Table 1 (cf. Section 2.3). In contrast to this
work, they only used CD_B for training and did not consider further dataset combina-
tions.

Comparing our BERT models, both generalized very well and performed similarly across
the datasets. Regarding the macro F1 scores, the only differences were seen for the
datasets CQ_B and MC_K, for which their GermanBERT model performed by 0.01 points
better in contrast to our GBERT model.

Comparing the results of the SVM models, Romberg and Conrad attained in general
higher macro F1 scores and more stable results over the different datasets. Particularly
for the datasets CQ_B and MC_K, their SVM model achieved noticeably better macro F1

scores that are by 0.07 and 0.06 points better. This may indicate that using the problem
transformation method binary relevance weakens the generalizability of SVM.
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train datasets CD_B CD_C CD_M CQ_B MC_K
h-loss macro F1 h-loss macro F1 h-loss macro F1 h-loss macro F1 h-loss macro F1

CD_B - - 0.08 0.92 0.06 0.92 0.09 0.89 0.12 0.88
CD_B + CD_C - - - - 0.06 0.92 0.12 0.86 0.12 0.88
CD_B + CD_M - - 0.08 0.92 - - 0.11 0.87 0.15 0.86
CD_B + CQ_B - - 0.11 0.88 0.08 0.89 - - 0.17 0.84
CD_B + MC_K - - 0.08 0.92 0.07 0.91 0.09 0.89 - -

(a) GBERT

train datasets CD_B CD_C CD_M CQ_B MC_K
h-loss macro F1 h-loss macro F1 h-loss macro F1 h-loss macro F1 h-loss macro F1

CD_B - - 0.09 0.91 0.06 0.92 0.11 0.87 0.14 0.87
CD_B + CD_C - - - - 0.06 0.92 0.15 0.84 0.14 0.87
CD_B + CD_M - - 0.10 0.90 - - 0.12 0.86 0.15 0.86
CD_B + CQ_B - - 0.11 0.89 0.06 0.91 - - 0.14 0.86
CD_B + MC_K - - 0.09 0.91 0.06 0.91 0.11 0.87 - -

(b) DistilBERT

train datasets CD_B CD_C CD_M CQ_B MC_K
h-loss macro F1 h-loss macro F1 h-loss macro F1 h-loss macro F1 h-loss macro F1

CD_B - - 0.16 0.82 0.10 0.85 0.31 0.69 0.27 0.73
CD_B + CD_C - - - - 0.12 0.83 0.34 0.67 0.29 0.72
CD_B + CD_M - - 0.18 0.80 - - 0.41 0.60 0.34 0.67
CD_B + CQ_B - - 0.17 0.82 0.15 0.81 - - 0.23 0.78
CD_B + MC_K - - 0.17 0.82 0.13 0.82 0.28 0.71 - -

(c) SVM

train datasets CD_B CD_C CD_M CQ_B MC_K
h-loss macro F1 h-loss macro F1 h-loss macro F1 h-loss macro F1 h-loss macro F1

CD_B - - 0.19 0.79 0.10 0.84 0.41 0.61 0.35 0.65
CD_B + CD_C - - - - 0.14 0.81 0.33 0.68 0.30 0.71
CD_B + CD_M - - 0.23 0.74 - - 0.53 0.49 0.40 0.60
CD_B + CQ_B - - 0.20 0.80 0.18 0.76 - - 0.25 0.76
CD_B + MC_K - - 0.20 0.80 0.16 0.79 0.26 0.73 - -

(d) XGBoost

Table 19: Cross-dataset evaluation. Comparison of GBERT, DistilBERT, SVM and XG-
Boost for the multi-label classification of major positions and premises among argumen-
tative sentences.
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8 Conclusion and Outlook

The objective of this thesis was to follow up on the work of Romberg and Conrad (2021)
and identify major positions and premises among argumentative sentences originating
from German public participation processes concerning urban planning and sustainable
mobility. In contrast to Romberg and Conrad, additionally the case of sentences that
contain both argument component types was considered, i.e., the classification task was
viewed as a multi-label classification task instead of a single-label classification task.
For the classification of argument component types, four different classification algo-
rithms were selected: BERT, DistilBERT, SVM and XGBoost. In comparison, Romberg
and Conrad applied GermanBERT, SVM and two other machine learning algorithms,
fastText and ECGA, for the single-label classification of major positions and premises.
The latter two methods were not considered in this work since they were clearly
outperfomed by BERT and SVM.
Since XGBoost and SVM do not support multi-label classification directly, different prob-
lem transformation methods were considered, which transform the problem into one or
more single-label classification tasks. Among the considered problem transformation
methods, label power-set, binary relevance and classifier chains were chosen.
First, all models were evaluated in an dataset-internal evaluation in order to examine
how well they perform in an “optimal” setting. Then, it was investigated whether the
models generalize well for unseen datasets in a cross-dataset evaluation, using one or
more datasets for training and the remaining datasets for testing. In both evaluations,
BERT and DistilBERT performed similarly well and clearly outperformed SVM and
XGBoost by producing better and more stable results.
In the dataset-internal evaluation, BERT and DistilBERT achieved on average macro F1

scores of 0.92 and 0.91, and hamming losses of 0.08 and 0.09. Despite being 40% smaller
in model size and about twice as fast, DistilBERT could compete with BERT. Hence,
in terms of efficiency, for world applications DistilBERT may be more advantageous,
especially if limited computational resources are available. For the classifiers SVM and
XGBoost, it was shown that the problem transformation methods perform very similarly,
however, binary relevance scored slightly better. In comparison, the applied BERT model
in Romberg and Conrad (2021) for the single-label classification of major positions and
premises achieved an average F1 macro score of 0.91 as well.
In the cross-dataset evaluation, BERT and DistilBERT produced highly generalizable
results across the datasets. BERT achieved the best results, attaining macro F1 scores
between 0.88 and 0.92 and hamming losses between 0.06 and 0.12 using the largest
dataset for training. Similar scores were reached with DistilBERT. In contrast, SVM and
XGBoost showed strong weaknesses in generalizing for some of the datasets.
To conclude, among the different methods, BERT and DistilBERT performed best for
the multi-label classification of major positions and premises among argumentative
sentences. Furthermore, the achieved results were comparable to the results of Romberg
and Conrad (2021) for the single label classification task.

In order to further improve the evaluation of public participation processes, future work
may try to identify whether sequential sentences in contributions belong to the same
major position or premise since statements are often made using several sentences. The



8 CONCLUSION AND OUTLOOK 59

investigation of coherent sentences may help to better understand the ideas and thoughts
of the participants. As this work highlighted, sentences can contain multiple argument
components, thus solving the task on token-level instead of sentence-level for each con-
tribution may give a more precise insight into the argument structure.
Another aspect that may be of interest for the automatic evaluation of public participation
data is to identify relations between the argument component types, e.g., which premises
support which major position. Identifying relations between the arguments may help to
further understand the reasoning behind the statements.
Furthermore, future work may investigate whether the trained models of this work also
work well on public participation data originating from different domains other than
urban planning and mobility. It may be more advantageous to provide a model that
works well on a wide branch of domains, hence, training additionally on public partici-
pation data from different sources and processes may help to produce a more generaliz-
able model.
Lastly, future works that also focus on the multi-label classification of major positions and
premises may consider to apply algorithm adaption methods and compare the results
of the adapted classifiers to the original single-label classifiers using different problem
transformation methods.
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